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1 The Poincaré Conjecture
Since its proposal by Henri Poincaré in 1904, the Poincaré Conjecture has driven the
flourishing development of geometric topology for over a hundred years. At least five
Fields Medals have been awarded in relation to it.

Its research path is similar to that of the Triangulation Conjecture, proceeding by
category and dimension. Interestingly, the 3-dimensional triangulation problem was solved
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early on, whereas the 3-dimensional Poincaré Conjecture was only solved in this century by
Perelman; the smooth triangulation problem was proven early, but the smooth Poincaré
Conjecture remains unresolved. The smooth Poincaré Conjecture refers to the existence
of exotic spheres in different dimensions; in particular, the existence of 4-dimensional
exotic spheres is a highly open problem.

1.1 The Poincaré Conjecture
When many concepts of homotopy groups and homology groups in modern topology
were first proposed in the early 20th century, their definitions were ambiguous. Stated
in modern language, in 1900, Poincaré initially conjectured: if the homology groups of
a 3-dimensional manifold are the same as those of the 3-sphere S3, then it is simply
connected, and thus homeomorphic to S3. However, the first half of this conjecture is
wrong. Poincaré provided a counterexample in 1904 (the Poincaré homology sphere P ,
where H˚(P ) = H˚(S

3), but |π1(P )| = 120, with the fundamental group being the binary
icosahedral group—a perfect group of order 120—so P is not simply connected). However,
he retained the second half of his 1900 conjecture, which is:

Conjecture 1 (Poincaré Conjecture (1904)). Let M be a closed 3-dimensional manifold.
If M is simply connected, then M is homeomorphic to S3.

For a century, this conjecture remained unresolved. Researchers turned to studying
the analogue of the Poincaré Conjecture in other dimensions, namely the Generalized
Poincaré Conjecture. However, the statement at this point could not simply be “a simply
connected closed manifold of dimension n ě 4 is homeomorphic to Sn”, because it is
known that there exist simply connected closed manifolds in these dimensions that are
not homotopy equivalent to Sn.

Therefore, for n ě 4, we require the condition “homotopy equivalent to Sn”, which is
stronger than being simply connected. That is:

Conjecture 2 (Generalized Poincaré Conjecture). Let M be a closed n-dimensional man-
ifold. If M is homotopy equivalent to Sn, then M is homeomorphic to Sn.

Historically, the term “Generalized Poincaré Conjecture” has often been used indis-
criminately to refer to the “Topological Poincaré Conjecture (the one above)”, “Weak
Smooth Poincaré Conjecture”, “Smooth Poincaré Conjecture”, “Weak P.L. Poincaré Con-
jecture”, or “P.L. Poincaré Conjecture”. In this article, I wish to use it to refer specifically
to the “Topological Poincaré Conjecture”.

Since a closed 3-dimensional manifold is simply connected if and only if it is homotopy
equivalent to S3 (I will provide a short proof at the end of this paper), the Generalized
Poincaré Conjecture for n = 3 is precisely the original (narrow) Poincaré Conjecture.

Today, the Generalized Poincaré Conjecture (the specific Poincaré Conjecture when
n = 3) has been proven correct in all dimensions.

1. When n = 1, it is correct, because a closed curve is necessarily homeomorphic to
S1;

2. When n = 2, it is correct; by the classification theorem of closed surfaces, a simply
connected closed surface must be S2;
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3. When n = 3, it is correct. In 2003, Perelman used Ricci flow to prove Thurston’s
Geometrization Conjecture [Per02][Per03b][Per03a] (i.e., any closed 3-manifold can
be decomposed along 2-tori into pieces, each of which admits one of eight geometric
structures; a simply connected closed manifold can only admit spherical geometry,
i.e., S3), thereby solving the Poincaré Conjecture;

4. When n = 4, it is correct. In 1982, Freedman proved the topological h-cobordism
theorem for 4-manifolds, then proved the classification theorem for simply connected
4-manifolds, and finally deduced the 4-dimensional Poincaré Conjecture [Fre82];

5. When n ě 5, it is correct. In 1962, the h-cobordism theory proposed by Smale
provided a proof for n ě 6 [Sma62], but the proof for n = 5 is generally credited to
Newman in 1966 [New66].

Regarding this series of conclusions, the following supplementary explanations should
be made:

• In Smale’s era, the Generalized Poincaré Conjecture for dimension 5 could not be
proven using the smooth h-cobordism theorem. The smooth h-cobordism theory
is only correct for n ě 5 (dimension of the cobordism), and it can only be used
to prove the Poincaré Conjecture for dimension n + 1. It was not until Freedman
proved the 4-dimensional topological h-cobordism theorem that a proof based on the
h-cobordism theorem could be given. Smale’s 1962 paper only claimed results for the
P.L. Poincaré Conjecture. His method worked for P.L. and Weak P.L. conjectures
for n ě 5, but not for the topological conjecture at n = 5. Nevertheless, people
often attribute the “Poincaré Conjecture for n ě 5” to Smale and broadly state that
Smale solved the Generalized Poincaré Conjecture for n ě 5.

• Freedman’s 1982 paper lacked many details. It was not until he personally convinced
some prominent figures that the academic community accepted his work. However,
his toolkit has rarely been used in subsequent research, and fewer and fewer people
truly understand his proof. Most just treat his conclusion as a “black box”, and
some have even begun to question its correctness. Fearing that the proof of this
epoch-making result might be “lost”, a group of mathematicians, with Freedman’s
support, began in 2013 to expand his work into a 496-page book, published in 2021
[BKK+21], with the goal of enabling motivated undergraduates to understand it
within a semester [Har21].

• In the three papers Perelman published between 2002 and 2003, not a single sen-
tence mentioned “Geometrization Conjecture” or “Poincaré Conjecture,” although
his techniques had de facto proven them. Later, several groups of mathematicians
filled in the details of the proof, among whom John Morgan and Tian Gang ex-
panded it into a book [MT07]. The academic community attributes the proof of
the Poincaré Conjecture to Perelman; however, he declined the 2006 Fields Medal
and the $1 million Millennium Prize from the Clay Mathematics Institute in 2010,
stating that Hamilton, who pioneered Ricci flow, made an equal contribution, and
the resolution of the Poincaré Conjecture should not be credited to him alone. In
fact, Perelman had already achieved numerous major results in the 90s. In 1994,
he was invited to speak at the ICM for his contributions to Alexandrov geometry
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and proved the “Soul Conjecture” the same year. In 1995, he rejected faculty offers
from several top universities, and in 1996, he rejected a prize from the European
Mathematical Society, establishing a long “track record” of declining awards.

Since the conclusion of the “Generalized Poincaré Conjecture” mentioned above only
requires the manifold to be homeomorphic to Sn in the topological sense, to distinguish it
from the “more generalized” Poincaré conjectures discussed later, we will hereafter refer
to the aforementioned Poincaré Conjecture as the “Topological Poincaré Conjecture.”

1.2 Smooth Poincaré Conjecture
When the topological Poincaré Conjecture for n ě 4 was not yet solved, mathematicians
tried to impose stronger regularity on the original manifold, such as smoothness or piece-
wise linear (P.L.) structures, to see if conditions for homeomorphism to a sphere could be
obtained.

Conjecture 3 (Weak Smooth Poincaré Conjecture). Let M be a closed n-dimensional
smooth manifold. If M is homotopy equivalent to Sn, then M is homeomorphic to Sn.

Historically, the proof of the Weak Smooth Poincaré Conjecture for n ě 5 was given
by Smale in his famous 1960 paper “GPC”, using tools from differential topology [Sma61].
Almost simultaneously, Stallings provided a proof for the Weak P.L. Poincaré Conjecture
for n ě 7 [Sta60], which implies the corresponding Weak Smooth Poincaré Conjecture.

However, since the Topological Poincaré Conjecture is stronger than the Weak Smooth
Poincaré Conjecture, people seem to care little about the history of the weak smooth
conjecture after the topological one was solved.

A more worthy problem to study is to make a trade-off: imposing a stronger condition
while also strengthening the conclusion, requiring not just topological homeomorphism
but diffeomorphism. We call this balanced conjecture the Strong Smooth Poincaré Con-
jecture, or simply the Smooth Poincaré Conjecture. It is famous and remains not fully
resolved to this day.

Conjecture 4 (Smooth Poincaré Conjecture). Let M be a closed n-dimensional smooth
manifold. If M is homotopy equivalent to Sn, then M is diffeomorphic to Sn equipped
with the standard smooth structure.

For the unit sphere Sn, removing the south and north poles gives Snz(S.pt.) and
Snz(N.pt.). Taking stereographic projections φ1 and φ2 to the equatorial plane Rn,
M = t(Snz(S.pt.), φ1), (S

nz(N.pt.), φ2)u is a smooth atlas for Sn. The “standard smooth
structure” of Sn mentioned above is the maximal atlas compatible with M.

In fact, conclusions regarding the Smooth Poincaré Conjecture were proposed long
before the series of developments in the Topological Poincaré Conjecture.

Theorem 1 (Moise[Moi52]+[Mil11]Theorem2). When n ď 3, n-dimensional topological
manifolds have a unique smooth structure.

This theorem tells us that when n ď 3, topological homeomorphism is equivalent
to smooth diffeomorphism, meaning the Topological Poincaré Conjecture for n ď 3 is
equivalent to the Smooth Poincaré Conjecture.

Theorem 2 (Milnor[Mil56]). Exotic smooth structures exist on S7.
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This conclusion disproved the Smooth Poincaré Conjecture for n = 7. If we denote
a sphere with an exotic smooth structure as Σ7, then Σ7 is homeomorphic (and thus
homotopy equivalent) to S7 but not diffeomorphic to it. We refer to such a Σ7 as an
“exotic sphere”.

Following the publication of Milnor’s 1956 result, research on exotic smooth structures
on smooth manifolds flourished. Research on “exotic spheres” is essentially research on the
“Smooth Poincaré Conjecture”: if Sn possesses a smooth structure not diffeomorphic to
the standard one, then the n-dimensional Smooth Poincaré Conjecture is false. Since the
Topological Poincaré Conjecture is correct in all dimensions, we can reduce the statement
of the Smooth Poincaré Conjecture to a more direct version:

Conjecture 5 (Alternative Statement of the Smooth Poincaré Conjecture). Let M be a
closed n-dimensional smooth manifold. If M is homeomorphic to Sn, then M is diffeo-
morphic to the standard differential structure of Sn; that is, there are no n-dimensional
exotic spheres.

For authoritative reviews on the Smooth Poincaré Conjecture, one can refer to the
introduction of Guozhen Wang’s article [WX17], as well as the lecture slides by Zhouli
Xu in November 2024 [Xu24].

After Milnor proposed the existence of exotic structures on S7 in 1956, he and Kervaire
discussed the 7-dimensional case completely in 1963 [KM63]: there are 28 (considering
orientation) smooth structures on S7 that are not diffeomorphic; if orientation is not
considered, there are 15.

In that paper, Kervaire and Milnor provided a general method for determining the ex-
istence of exotic spheres: calculating the group of homotopy n-spheres Θn. From Smale’s
smooth h-cobordism theorem for n ě 5, it is known that for n ě 5, the number of distinct
smooth structures on Sn is simply |Θn|. They also gave conclusions for dimensions 5
through 18, noting that dimensions 5, 6, and 12 do not have exotic spheres.

Today, the theory of exotic spheres has the following conclusions:
In sufficiently high dimensions, all odd-dimensional spheres possess exotic smooth

structures. Specifically, the only odd-dimensional spheres with a unique smooth structure
are S1, S3, S5, and S61. The fact that the last odd dimension, 61, has no exotic spheres
was proven by Guozhen Wang and Zhouli Xu in 2017 [WX17].

More than half of the even dimensions have been proven to possess exotic spheres; it
is conjectured that they exist in the remaining even dimensions as well [BMQ23].

Current Conjecture:

Conjecture 6. For spheres of dimension greater than 4, the only ones with a unique
smooth structure are S5, S6, S12, S56, and S61.

Progress in the theory of exotic spheres is currently very rapid, and people believe this
conjecture is correct.

Regarding the existence of 4-dimensional exotic spheres, although it is a highly open
problem, people tend to believe that 4-dimensional exotic spheres do exist. This is be-
cause 4-dimensional space possesses too many “wild” properties: for example, R4 has
uncountably many smooth structures that are not mutually diffeomorphic (though this
conclusion does not currently contribute to the existence of 4-dimensional exotic spheres).
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1.3 P.L. Poincaré Conjecture
Similar to the Smooth Poincaré Conjecture, the P.L. (Piecewise Linear) Poincaré Conjec-
ture also initially had a weak version:

Conjecture 7 (Weak P.L. Poincaré Conjecture). Let M be a closed n-dimensional P.L.
manifold. If M is homotopy equivalent to Sn, then M is homeomorphic to Sn.

Historically, the “Weak P.L. Poincaré Conjecture” developed as follows:

1. In 1960, Smale [Sma61] and Stallings [Sta60] independently proved the case for
n ě 7 (Smale announced it first; the two used different methods, with Smale not
yet using h-cobordism at this time, and Stallings using a method called “engulfing”).
Subsequently, Smale generalized his proof method to n ě 5;

2. In 1961, Zeeman modified Stallings’ construction [Zee61] and solved the cases for
n = 5, 6;

3. In 1966, Newman generalized Stallings’ engulfing method to the topological case,
proving the Generalized (Topological) Poincaré Conjecture for n ě 5 [New66].

Smale’s initial proof and Stallings’ engulfing theorem have a strong flavor of P.L.
topology.

P.L. topology had extensive applications in the 1960s and 70s, through which Smale
and others achieved a host of brilliant results. However, with the resolution of a series of
major problems, this set of tools gradually “declined”. Today, the popular tool in geomet-
ric topology is Gauge Theory, and few people use P.L. topology tools to solve problems
anymore. Regarding a series of methods and applications of P.L. topology, one can refer
to a long review written by Sandro Buoncristiano in 2003 [Buo03], which introduces the
details of the proof of the Weak P.L. Conjecture; and the textbook written by Rourke
and Sanderson in the 80s [RS82], which introduces the proof of the P.L. conjecture for
n ě 6 based on the h-cobordism theorem.

With the resolution of the Topological Conjecture, the Weak P.L. Conjecture re-
mains mostly of technical value. Nowadays, when introducing the proof methods of the
Generalized Poincaré Conjecture, people often use the h-cobordism theorem, even though
historically it was not the h-cobordism theorem that first proved the Generalized Poincaré
Conjecture.

The strong version of the Weak P.L. Poincaré Conjecture after trade-off (usually di-
rectly called the P.L. Poincaré Conjecture) is:

Conjecture 8 (P.L. Poincaré Conjecture). Let M be a closed n-dimensional P.L. mani-
fold. If M is homotopy equivalent to Sn, then M is P.L. homeomorphic to Sn.

The P.L. structure is a weaker structure than the smooth structure. One conclusion
is that every smooth structure determines a unique P.L. structure [Cai35][Whi40], and
P.L. regularity is stronger than topological. By Theorem 1, when n ď 3, the Topological,
P.L., and Smooth categories are equivalent. Since the Topological Poincaré Conjecture is
correct for n ď 3, the P.L. Poincaré Conjecture for n ď 3 is also correct.

The P.L. Poincaré Conjecture for n ě 5 was solved by Smale using methods related
to the h-cobordism theorem in 1962 [Sma62].
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Since smooth structures are equivalent to P.L. structures for n ď 6 [Mil11] (The-
orem 2), the 4-dimensional P.L. Poincaré Conjecture is equivalent to the existence of
4-dimensional exotic spheres.

That is:

Corollary 1.

4-dimensional P.L. Poincaré Conjecture is correct
ðñ 4-dimensional Smooth Poincaré Conjecture is correct
ðñ S4 has no exotic smooth structures

1.4 Generalized Conjecture for n = 3 is Equivalent to the Nar-
row Conjecture

Proposition 1. Let M3 be a closed 3-dimensional manifold. Then M is simply connected
ðñ M is homotopy equivalent to S3.

Proof. ð: π1(M) = π1(S
3) = 0, so M is simply connected;

ñ: If M is simply connected, its connected orientable covering is the trivial covering,
meaning M is an orientable manifold, so H3(M) = Z. Additionally, since H1(M) is the
abelianization of π1(M), π1(M) = 0 implies H1(M) = 0. By the Universal Coefficient
Theorem, H1(M) = 0. Then by Poincaré Duality, H2(M) – H1(M) = 0. By the
Hurewicz Theorem, π2(M) – H2(M) = 0, and consequently π3(M) – H3(M) – Z. This
means a generator of π3(M) can be determined by a map S3 Ñ M of degree 1, inducing
an isomorphism between H3 and π3. Furthermore, there exists a map from S3 to M
(regarded as simply connected simplicial complexes) that induces isomorphisms on all
homology groups. By Whitehead’s Theorem, this map is a homotopy equivalence.

The idea for the necessity part of the proposition comes from Hatcher’s review article
on the classification of 3-manifolds [Hat04], and one can also refer to a Zhihu article
[梁 19].

2 Summary
Essentially, the only remaining unresolved part of the Poincaré Conjecture involves exotic
spheres in certain even dimensions (especially 4).

Table 1: Status of Resolution for Various Poincaré Conjectures
Category Status

Topological Correct in all dimensions
P.L. Correct in all dimensions except n = 4 (unresolved)
Smooth Correct for n = 1, 2, 3, 5, 6, 12, 56, 61,

Incorrect for all other odd dimensions, incorrect for > half of even dimensions,
Unresolved for less than half of even dimensions (especially 4)

To summarize the five Fields Medals associated with the Poincaré Conjecture, they
were awarded sequentially to Milnor, Smale, Thurston, Freedman, and Perelman.
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Table 2: Fields Medals Related to the Poincaré Conjecture
Mathematician Year Awarded Achievement

John Milnor 1962 7-dimensional exotic sphere (7D Smooth PC)
Stephen Smale 1966 Generalized (P.L.) Poincaré Conjecture for n ě 5
William Thurston 1982 Geometrization Conjecture (Series of results on 3-manifolds)
Michael Freedman 1986 Generalized Poincaré Conjecture for n = 4
Grigori Perelman 2006 (Specific) Poincaré Conjecture

Based on this statistical pattern, can we infer that the 2026 Fields Medal will also be
awarded for the Poincaré Conjecture? If we discount the steadily progressing problem of
high-dimensional exotic spheres, only the large puzzle piece of the 4-dimensional exotic
sphere remains for the Poincaré Conjecture. Time is running out for the mathematics
community :).
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