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2 1 Introduction

1 Introduction
The Triangulation Conjecture has been one of the most important problems in the field
of geometric topology since the last century, serving as a connecting thread for a major
line of research.

A space that can be triangulated (or simplicially triangulated) corresponds to a simpli-
cial complex. Simplicial complexes are powerful tools for studying topological problems.
They are topological spaces with a combinatorial structure, or can be viewed as finite
sets with a combinatorial structure between subsets, dictating which (n´ 1)-dimensional
spaces are “faces” of which n-dimensional spaces. Intuitively, like a tetrahedron, it is a
figure where relationships between faces, edges, and vertices are prescribed. This helps
us directly define certain invariants.

Manifolds are another class of well-behaved topological spaces. They are locally home-
omorphic to Euclidean space, meaning they have good local structure. Manifolds are
ubiquitous, such as spheres, Möbius strips, projective spaces, etc. The property of being
locally Euclidean gives us the opportunity to perform calculus on more general spaces.
However, this local property yields almost no feedback on the global information of the
manifold. If a manifold has a smooth structure, we can perform global calculus. The
good news is that topological manifolds of dimension less than or equal to three possess
a unique smooth structure. Therefore, purely topological problems like the 3-dimensional
Poincaré Conjecture can be solved using tools from analysis and equations; Perelman
solved the 3-dimensional Poincaré Conjecture using Ricci flow, a tool from partial differ-
ential equations.

Triangulating a manifold is a powerful method for studying its global properties. For
instance, the Euler characteristic was initially derived from polyhedra, later generalized to
higher-dimensional polyhedra, and then to triangulable manifolds. We can prove that for
a given manifold, its Euler characteristic is independent of the method of triangulation;
that is, it is a topological invariant. In this context, we are more concerned with whether a
triangulation of a manifold exists: once it exists, we can calculate well-defined topological
quantities using the triangulation structure. Compared to purely topological methods,
such calculations are often simpler.

Furthermore, with a triangulation on a topological space, it is easy to calculate its
simplicial homology. One widely applied homology theory is singular homology, which
applies to all topological spaces, but specific calculations are often complex. Simplicial
homology can only be used for topological spaces where a triangulation exists. Mathe-
maticians are also concerned with whether triangulations are essentially unique (i.e., in
the sense of having a common subdivision). Some special topological spaces have triangu-
lations that are not essentially unique, or may not even possess a triangulation. Despite
these defects, simplicial homology still holds an important place in topology. Because its
definition is more intuitive and calculation more direct, it facilitates deriving conclusions
on spaces with nice properties.

After the existence and uniqueness of triangulations on general topological spaces
were disproven, mathematicians became concerned with the existence and uniqueness of
triangulations on manifolds, which have better regularity. The ideal situation is that a
topological space is simultaneously a manifold and a simplicial complex (i.e., the manifold
can be triangulated), so that it possesses both good local properties and global properties.

Thus, mathematicians conjectured:
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Conjecture 1 (Triangulation Conjecture). A topological manifold is homeomorphic to a
simplicial complex.

This problem was first proposed by Kneser in 1926, and it was not until 2013 that
Manolescu formally resolved this problem [Man15].

Historically, the resolution of this problem proceeded by dimension; in fact, the re-
search methods for n = 2, 3, 4,ě 5 are all different.

The cases for n ď 3 were solved earliest, and encouragingly, the Triangulation Con-
jecture is correct in these cases.

When the case for n ě 4 was highly open, mathematicians settled for the next best
thing. Instead of limiting themselves to the most general topological manifolds (the
topological category), they studied the behavior of the Triangulation Conjecture in the
P.L. (Piecewise Linear) category and the smooth category, which have better regularity.

The Triangulation Conjecture is correct in all dimensions within the smooth category.
Manifolds in the P.L. category possess combinatorial triangulations, which are stronger
than simplicial triangulations, so the conjecture is also correct there. In the topological
category, when n ě 4, there are examples where P.L. structures do not exist. The Kirby-
Siebenmann class, a tool for studying the existence of P.L. structures, can be composed
with the Bockstein homomorphism to study simplicial triangulations.

When mathematicians constructed 4-dimensional non-triangulable manifolds, thereby
disproving the 4-dimensional Triangulation Conjecture, they dared not assert the cor-
rectness of the conclusion for ě 5 due to the exotic behavior of dimension 4 (e.g., Rn

has a unique smooth structure for n ‰ 4, while for n = 4 there are uncountably many
smooth structures). The Triangulation Conjecture for n ě 5 remained unresolved for
a long time following the progress of Galewski & Stern in the 1980s, until Manolescu
constructed Pin(2)-equivariant Seiberg-Witten Floer homology in the 21st century. This
revealed more symmetry and disproved the conjecture for n ě 5.

2 Triangulation and Combinatorial Triangulation
First, we give the definition of manifolds in different categories and the definition of
simplicial complexes, and then describe the concepts of triangulation and combinatorial
triangulation of manifolds.

Definition 1. Let Mn be a Hausdorff space with a countable topological basis. If for all
x P X, there exists a neighborhood U of x and a homeomorphism ϕ : U Ñ Rn, then M is
called an n-dimensional topological manifold, and (U, ϕ) is a coordinate chart at point x.

Definition 2. If Mn is a topological manifold, a collection of coordinate charts tUi, ϕiuiPI
such that

Ť

i Ui = M is called an atlas of M . The continuous maps ϕi ˝ ϕ´1
j : Rn Ñ Rn

are called transition maps. If all transition maps are smooth, then M is called a smooth
manifold, and its maximal atlas is called a smooth structure on M (referring here to the
equivalence class under smooth homeomorphism).

Definition 3. If Mn is a topological manifold and the transition maps are P.L. (Piecewise
Linear) maps, then M is called a P.L. manifold (Piecewise Linear manifold), and its
maximal atlas is called a P.L. structure on M .
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4 2 Triangulation and Combinatorial Triangulation

Definition 4. (V, S) is called an abstract simplicial complex if V is a set of vertices and
S Ă P(V ), such that if σ P S and τ Ă σ, then τ P S. For all σ P S with |σ| = d, if
we replace σ with a d-dimensional simplex ∆d, this is called the geometric realization of
(V, S), denoted as K, and referred to as a simplicial complex. |K| =

ğ

∆dPK

∆d is called the

underlying space of K.

Hereafter, we do not distinguish between the abstract simplicial complex and its cor-
responding simplicial complex, denoting it as K = (V, S).

The star of a simplex τ P S is

st(τ) = tσ P S|τ Ă σu

The closure of S 1 Ă S is

Cl(S 1) = tτ P S|τ Ă σ P S 1u

The link of a simplex τ P S is

lk(τ) = tσ P Cl(st(τ))|τ X σ = ∅u

A triangulation that only requires the topological manifold to be homeomorphic to a
simplicial complex is called a simplicial triangulation:

Definition 5 (Simplicial Triangulation / Triangulation). An n-dimensional topological
manifold M is triangulable if and only if there exists a homeomorphism φ : Mn Ñ |K|,
where K is a simplicial complex.

To better study the triangulation of manifolds, we need to introduce the concept of
combinatorial triangulation. In this paper, if “triangulation” is used without the adjective
“combinatorial,” it refers to simplicial triangulation.

If we require more “combinatorial structure” on the simplicial complex, i.e., requiring
it to also be “locally Euclidean,” we have combinatorial triangulation:

Definition 6 (Combinatorial Triangulation). An n-dimensional topological manifold M
is combinatorially triangulable if and only if there exists a homeomorphism φ :Mn Ñ |K|,
where K is a simplicial complex, and for all A P K, lk(A) is P.L. homeomorphic to the
standard sphere.

In fact, a manifold has a combinatorial triangulation if and only if it is a P.L. manifold.
Combinatorial triangulation is a stronger type of triangulation than simplicial trian-

gulation, but its regularity is weaker than differential conditions, while its properties are
closer to simplicial triangulation. One can study simplicial triangulation on the basis of
combinatorial triangulation.

An example of a space with a simplicial triangulation but no combinatorial triangula-
tion is the double suspension of the Poincaré homology sphere P 3, Σ2P . By the Double
Suspension Theorem, Σ2P – S5, so there exists a triangulation on Σ2P ; however, the
link at its cone points is ΣP , which is not P.L. homeomorphic to S4 (it is not even a
manifold), so it has no P.L. structure, i.e., it is not combinatorially triangulable.
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In fact, there is an obstruction to the existence of a combinatorial triangulation on a
topological manifold M—the Kirby-Siebenmann class ∆(M). By composing the Bock-
stein homomorphism δ once in the cohomology sequence, we obtain the obstruction to
the existence of a simplicial triangulation, δ(∆(M)).

Regarding the uniqueness of triangulation, there was an important conjecture: the
Hauptvermutung (Main Conjecture of Combinatorial Topology), see [ARC96] for details.

Conjecture 2 (Hauptvermutung for Polyhedra (Topological Spaces)). Any two triangu-
lations of a triangulable topological space have combinatorially equivalent subdivisions.

Or equivalently characterized as: If two simplicial complexes are homeomorphic, then
they are P.L. homeomorphic, and the homeomorphism is homotopic to the P.L. homeo-
morphism between them.

The Hauptvermutung for polyhedra was disproven by Milnor in 1961. Consequently,
we are curious whether triangulations are unique on spaces with stronger regularity, such
as manifolds:

Conjecture 3 (Hauptvermutung for Manifolds). If two P.L. manifolds Mn and Nn are
homeomorphic, then they are P.L. homeomorphic, and the homeomorphism is homotopic
to the P.L. homeomorphism between them.

The Hauptvermutung for manifolds was eventually disproven as well.
If two triangulations of a triangulable manifold have combinatorially equivalent sub-

divisions, then these two triangulations are said to be essentially unique.
We will introduce later that for smooth manifolds, all their triangulations are essen-

tially unique.
An example of a manifold with two distinct triangulation (simplicial triangulation)

structures is the double suspension of the Poincaré homology sphere P 3. As mentioned
above, Σ2P = S5, and S5 has a standard P.L. structure obtained from the standard P.L.
structure of S3 by double suspension. However, since S3 fl P 3, the P.L. structure on P 3,
after double suspension, yields a triangulation structure on S5 (as mentioned before, this
cannot be a P.L. structure) via the Double Suspension Theorem. This triangulation is
not combinatorially equivalent to the standard P.L. structure of S5, otherwise it would
contradict S3 fl P 3. Thus, S5 has two inequivalent triangulation structures: one induced
by the double suspension of S3, and one induced by the double suspension of P 3. This
does not contradict the correctness of the P.L. Poincaré Conjecture for n = 5, which states
that there is only a unique P.L. structure on S5.

3 History of the Development of the Triangulation
Conjecture

We now consider the problem of the Triangulation Conjecture to be completely solved by
Manolescu in 2013 [Man15]. Let us first give the answers to the Triangulation Conjecture
in various categories and dimensions [Man24]:

3.1 Do all smooth manifolds have triangulations?
The regularity of smooth manifolds is sufficient, so the answer here is affirmative.
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6 4 Kirby-Siebenmann’s Work on Combinatorial Triangulation

Cairns in 1935 [Cai35] and Whitehead in 1940 [Whi40] proved that: Any smooth
manifold has an essentially unique P.L. structure, and therefore it is triangulable.

3.2 Do all topological manifolds have triangulations?
• For n = 0, 1, Correct, it is trivial;

• For n = 2, Correct, Radó proved in 1925 that any 2-dimensional surface has a P.L.
structure, and thus has a triangulation;

• For n = 3, Correct, Moise proved in 1952 that any 3-dimensional manifold has a
smooth structure, and thus has a triangulation;

• For n = 4, Incorrect, in 1990, Casson applied Casson invariants to the E8 manifold
constructed by Freedman, demonstrating that it cannot be triangulated;

• For n ě 5, Galewski & Stern in 1980 and Matumoto in 1978 reduced the existence
of triangulation to the split exactness problem of an exact sequence. This problem
was finally disproven by Manolescu in 2013 using Pin(2)-equivariant Seiberg-Witten
Floer homology.

3.3 Are all topological manifolds P.L. manifolds (is there a com-
binatorial triangulation)?

• For n ď 3, Correct, reason as above;

• For n = 4, Incorrect, the 4-dimensional E8 manifold constructed by Freedman in
1982 has no piecewise linear structure;

• For n ě 5, Incorrect, Kirby-Siebenmann constructed an obstruction to the existence
of P.L. structures on a topological manifoldM , namely the Kirby-Siebenmann class
∆(M) P H4(M ;Z/2). For n ě 5, let Mn = E8 ˆ T n´4, then ∆(M) ‰ 0, so M is a
manifold with no combinatorial triangulation.

For the categories to which manifolds belong, we have the following inclusion relations
(Figure 1): Regularity increases from topological manifolds, to simplicially triangulable
manifolds, to P.L. manifolds (combinatorially triangulable manifolds), to smooth man-
ifolds. When n ď 3, all categories are equivalent, i.e., there exists a unique smooth
structure and P.L. structure on a topological manifold, and these structures determine
each other. When n ď 6, the P.L. structure of a manifold determines a unique smooth
structure, whereas for n = 7, a smooth structure exists on a P.L. manifold, but it may
not be unique [Mil11].

4 Kirby-Siebenmann’s Work on Combinatorial Tri-
angulation

4.1 Homology Cobordism Group Θ3

Two oriented n-dimensional manifolds Mn
1 ,M

n
2 are called oriented cobordant, denoted as

Mn
1 „ Mn

2 , if there exists an (n+ 1)-dimensional oriented manifold with boundary W n+1
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4.1 Homology Cobordism Group Θ3 7

Figure 1: Relationships of Manifold Classifications

such that BW n+1 – Mn
1 \ (´Mn). In this case, the manifold W n+1 is called a cobordism

between Mn
1 and Mm

2 . When Mn
2 is the empty manifold, Mn

1 is said to be null-cobordant.
The oriented cobordism relation „ defined above is indeed an equivalence relation.

Reflexivity follows from the trivial cobordism W n+1 = Mn ˆ I, symmetry follows from
reversing the orientation of W n+1, and transitivity follows from gluing along common
boundaries.

Definition 7. Let [Mn] denote the oriented cobordism equivalence class of Mn. The set
of equivalence classes is denoted by Ωn. Define an addition operation in Ωn:

[Mn
1 ] + [Mn

2 ] := [Mn
1 \ Mn

2 ],

then Ωn becomes an Abelian group. Its zero element is the equivalence class of null-
cobordant manifolds. Ωn is called the oriented cobordism group of n-dimensional manifolds.

It can be verified that for two trivial cobordisms Mn
1 ˆ I,Mn

2 ˆ I, by performing
boundary connected sum along M1 ˆ 0 and M2 ˆ 0, we obtain an (n + 1)-dimensional
oriented manifold W , where BW = (M1#M2) \ ´(M1 \ M2). Thus [M1#M2] = [Mn

1 ] +
[Mn

2 ], so we can also use connected sum to define addition in Ωn.
Through Thom’s cobordism theory or 3-dimensional topological surgery, it can be

proven that Ω3 = 0, meaning all oriented 3-dimensional compact manifolds are boundaries
of some oriented compact 4-dimensional manifold.

Definition 8. The homology cobordism group Θ3 is the set of equivalence classes of integer
homology spheres under the cobordism relation. That is, @Y P Θ3, H˚(Y ;Z) = H˚(S

3;Z),
and Y1 „ Y2 P Θ3 ô DX4, BX = ´Y1 Y Y2, H˚(X;Z) = H˚(S

3 ˆ [0, 1];Z). [S3] is
regarded as the identity element of the group, Y ÞÑ ´Y is the inverse mapping, and
(Y1, Y2) ÞÑ Y1#Y2 is addition, thus forming an Abelian group.

Unlike the simple conclusion that Ω3 = 0, Θ3 has the requirement of “homology
cobordism” added to its definition, making its structure much more complex. Since Ω3 =
0, any two 3-dimensional homology spheres are cobordant. However, only when this
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8 4 Kirby-Siebenmann’s Work on Combinatorial Triangulation

cobordism is a “homology cobordism” (analogous to the “trivial cobordism” S3 ˆ I) are
two homology spheres considered to belong to the same equivalence class in the homology
cobordism group.

To study its structure, we can use homomorphisms from it to other Abelian groups,
such as the Rokhlin homomorphism:

Definition 9. The Rokhlin homomorphism µ : Θ3 Ñ Z/2, µ(Y ) =
σ(W )

8
mod 2, where

W is a smooth compact spin 4-manifold with BW = Y , and σ(W ) is the signature of the
intersection form of W .

For example, we have µ(S3) = 0, µ(P ) = 1, where P is the Poincaré homology sphere.
It can be viewed as the boundary of a 4-manifold obtained by E8-plumbing (called the
E8 manifold). Its intersection form matrix is

´2 1 0 0 0 0 0 0
1 ´2 1 0 0 0 0 0
0 1 ´2 1 0 0 0 0
0 0 1 ´2 1 0 0 0
0 0 0 1 ´2 1 0 1
0 0 0 0 1 ´2 1 0
0 0 0 0 0 1 ´2 0
0 0 0 0 1 0 0 ´2


This matrix is a negative definite matrix of order 8 (in some of Manolescu’s papers, the
E8 matrix is taken as positive definite, with no essential difference), so σ(E8) = 8, and
µ(P ) = 1.

Using Rokhlin’s theorem, we can prove that µ is indeed a homomorphism:

Theorem 1 (Rokhlin). For a smooth closed spin 4-manifold X, σ(X) is divisible by 16.

If Y 3 serves as the boundary for 4-dimensional smooth spin manifolds W1,W2, let
X = W1 YY W2. Then X is a closed 4-dimensional spin manifold. In the homology
sequence induced by the commutative diagram of inclusion maps

W1

Y X

W2

we have H2(X) = H2(W1)‘H2(W2). Therefore, the signature of the intersection form of
X equals the sum of the signatures of the intersection forms of W1 and W2. By Rokhlin’s
theorem, σ(W1) + σ(W2) = σ(X) ” 0 mod 16, so σ(W1)/8 ” σ(W2)/8 mod 2. This
means the value of µ(Y ) is independent of the choice ofW . Similarly, it can be proven that
the value of µ is independent of the choice of representative in the equivalence class of the
homology cobordism group. Thus, µ is a well-defined map on Θ3. Furthermore, if compact
spin manifolds with boundary satisfy BW1 = Y1, BW2 = Y2, then Y1#Y2 = B(W1#W2), so
µ(Y1#Y2) = µ(Y1) + µ(Y2), which proves that µ is a homomorphism.

8



4.2 Kirby-Siebenmann class 9

Also, since µ is a surjective homomorphism, this shows that Θ3 is not a trivial group.
Due to the existence of the Rokhlin homomorphism, we know |Θ3| ě 2. For a time,

mathematicians hoped that µ was an isomorphism from Θ3 to Z/2. However, when
Donaldson introduced gauge theory tools to study 4-manifolds, Furuta used them to
prove that Θ3 is not finitely generated, i.e., it has a Z subgroup. Later, it was discovered
that it even has a Z subgroup as a direct summand, and even a Z8 as a direct summand,
and furthermore ΘH

3 /Z8 also has a Z8 as a direct summand.

4.2 Kirby-Siebenmann class
A principal G-bundle is a fiber bundle with fiber being a topological group G, and G
acting freely on the fibers.

For a given group G, one can construct a principal G-bundle EG Ñ BG such that any
principal G-bundle P Ñ B with a paracompact base space B can be pulled back from
EG Ñ BG. That is, there exists a bundle map f : B Ñ BG inducing an isomorphism
on fibers, and P = f˚(EG). Additionally, the total space EG is contractible. A principal
G-bundle satisfying these conditions is called a universal G-bundle.

The classifying space of principal G-bundles is the base space BG of the universal
bundle EG Ñ BG. The meaning of classification is that for any topological space X, the
homotopy equivalence classes of principal G-bundles on it correspond one-to-one with the
homotopy classes of continuous maps from X to BG.

For example, the infinite-dimensional Grassmannian manifold can serve as the clas-
sifying space for principal Ok-bundles (since k-dimensional real vector bundles can be
reduced to Ok bundles, the Grassmannian can also serve as the classifying space for all
k-dimensional real vector bundles).

The Grassmannian manifold Gr(k, n) is the quotient space of the orthonormalized
Stiefel manifold V 0(k, n), i.e., the set of all orthonormal frames in Rn, where two or-
thonormal frames are equivalent if they span the same k-dimensional subspace in Rn.
Gr(k, n) is the set parameterizing all k-dimensional subspaces in Rn. By definition,
V 0(k, n) Ñ Gr(k, n) is a principal O(k) bundle. The canonical embedding of Euclidean
space from low dimension to high dimension induces embeddings Gr(k, n), V 0(k, n) as
n Ñ 8. Let Gr(k,8) = lim

nÑ8
Gr(k, n). The resulting infinite-dimensional manifold

Gr(k,8) is the classifying space for O(k), i.e.,

EO(k) = V 0(k,8) Ñ BO(k) = Gr(k,8)

is the universal bundle for principal O(k) bundles.
If we select a representative element of the fiber on V 0(k,8) for each point on Gr(k,8)

and replace this fiber with the k-dimensional subspace spanned by the orthonormal frame
of the representative element, we obtain the canonical vector bundle γk. γk Ñ Gr(k,8)
is the universal bundle for k-dimensional vector bundles.

Similarly, we define TOP(n),PL(n),Diff(n) as the groups of all origin-preserving self-
homeomorphisms, self-P.L. homeomorphisms, and self-diffeomorphisms on Rn, respec-
tively. Obviously, there are inclusion maps TOP(n) Ñ TOP(n+ 1), and similarly for the
other two sequences of groups. Letting n Ñ 8, we obtain three groups TOP,PL,Diff, with
inclusion maps Diff Ñ PL Ñ TOP. Let their classifying spaces be BTOP, BPL, BDiff.
Then there are inclusion maps BDiff Ñ BPL Ñ BTOP.

9



10 4 Kirby-Siebenmann’s Work on Combinatorial Triangulation

Generally, if H Ă G is a subgroup, then EG is a contractible space under free H
action, and EG Ñ EG/H is a principal H bundle. Thus EG/H can be viewed as the
classifying space BH. Therefore, the natural map ψ : EG/H Ñ EG/G is actually a
model for BH Ñ BG, and the fiber of ψ equals G/H.

Therefore, we can identify the fibers of BDiff Ñ BPL and BPL Ñ BTOP with
PL/Diff and TOP/PL, respectively.

Thus, for any topological manifold X, there exists a canonical map f : X Ñ BTOP.
The existence of a PL structure on X is equivalent to the problem of lifting f to a map
F : X Ñ BPL. Furthermore, the existence of G : X Ñ BDiff determines whether X has
a smooth structure.

The above lifting problems can be studied through obstruction theory, specifically
obstruction classes in cohomology rings. The homotopy types of the fibers of BDiff Ñ

BPL and BPL Ñ BTOP play an important role in the research.
For an n-dimensional smooth manifold X, there exists a canonical map f : X Ñ

BGLn(R). Whether a lift F : X Ñ BGL+
n (R) exists determines if X is orientable. Since

GL+
n (R) Ă GLn(R) is one of the two connected components, and GLn(R)/GL+

n (R) = Z/2,
the fiber of BGL+

n (R) Ñ BGLn(R) is a K(Z/2, 0) space. By standard obstruction theory,
the obstruction class determining the existence of orientation lies in H1(X;Z/2). It can
be proven that this is exactly the Stiefel-Whitney class w1(X).

Another example is the double covering Spin(n) Ñ SO(n), which induces a fiber
bundle BSpin(n) Ñ BSO(n) with fiber B(Z/2), which is a K(Z/2, 1) space (can be taken
as RP8). The existence of a spin structure on X depends on whether the canonical map
f : X Ñ BSO(n) (fixing a Riemannian metric and orientation on X) can be lifted to
BSpin(n). By obstruction theory, the obstruction to the existence of a spin structure lies
in H2(X;Z/2). It can be proven that this is exactly the Stiefel-Whitney class w2(X).

As mentioned earlier, for a general topological manifold M , the problem of the exis-
tence of a P.L. structure is the map lifting problem shown in the diagram:

BPL

M BTOP

ψ

f

∆(M) is defined as the obstruction to lifting f : M Ñ BTOP to BPL. It has the
following property:

Theorem 2. If Mn is a topological manifold and n ě 5, then M has a P.L. structure if
and only if ∆(M) = 0 P H4(M ;Z/2). Furthermore, if ∆(M) = 0, the inequivalent P.L.
structures on M can be parameterized by H3(M ;Z/2).

Similar to the previous examples of orientation and spin, here we discuss the homotopy
type of the fiber TOP/PL of BPL Ñ BTOP. In [KS77], it was proven that TOP/PL is
a K(Z/2, 3) space, so the obstruction class lies in H4(M ;Z/2).

Generally, it is difficult to express the specific form of ∆(M). For special cases: If the
topological manifold M has a triangulation, we can give an expression for ∆(M).

For simplicity, let us first consider the orientable case: Let an oriented topological
manifoldMn have a fixed triangulation K (not necessarily a combinatorial triangulation).
Let

c(K) =
ÿ

σPKn´4

[lk(σ)] P Hn´4(M,Θ3) – H4(M,Θ3)

10
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By Poincaré duality, this can be viewed as c(K) P H4(M ; Θ3).
Using the surjective homomorphism µ, we can construct a short exact sequence:

0 Ñ ker(µ) ι
ÝÑ Θ3

µ
ÝÑ Z/2 Ñ 0

This induces a long exact sequence with variable coefficients:

¨ ¨ ¨ Ñ H4(M ; Θ3)
µ
ÝÑ H4(M ;Z/2) δ

ÝÑ H5(M ; kerµ) Ñ ¨ ¨ ¨

c(K) ÞÑ ∆(M)

That is, ∆(M) = µ(c(K)).
When K is a combinatorial triangulation, c(K) = 0. On the other hand, µ(c(K)) = 0

implies that there exists some combinatorial triangulation on M (possibly different from
K). This shows that µ(c(K)) is indeed the obstruction to the existence of a P.L. structure,
i.e., ∆(M) = µ(c(K)).

For the case where M is non-orientable, we can use Poincaré duality with local coef-
ficients to similarly obtain c(K) P H4(M ; Θ3).

However, this construction depends on the choice of triangulation K, so it is not
suitable for directly studying the problem of simplicial triangulation. But in the work of
Galewski & Stern, a “Universal 5-manifold” is constructed, where this comes into play
using proof by contradiction.

5 Galewski & Stern’s Work for n ě 5

5.1 Steenrod Squares
For the short exact sequence

0 Ñ Z/2 ˆ2
ÝÑ Z/4 r

ÝÑ Z/2 Ñ 0

where r is the mod 2 homomorphism, it induces a long exact sequence

¨ ¨ ¨
β
ÝÑ H i(M ;Z/2) ˆ2

ÝÑ H i(M ;Z/4) r
ÝÑ H i(M ;Z/2) β

ÝÑ H i+1(M ;Z/2) ˆ2
ÝÑ

whereM is a fixed topological manifold. The Bockstein homomorphism β here is the first
Steenrod square Sq1, i.e., Sq1 = β : Hk(M ;Z/2) Ñ Hk+1(M ;Z/2).

5.2 Equivalence Conditions for Triangulation when n ě 5

Galewski & Stern [GS80] and Matumoto [Mat76] gave a cohomology obstruction to the
existence of triangulation (simplicial triangulation), and this obstruction is precisely the
Bockstein homomorphism δ : H4(M ;Z/2) Ñ H5(X, ker(µ)) composed with the Kirby-
Siebenmann class ∆(M), i.e., δ(∆(M)).

Similar to the introduction of ∆, the obstruction to triangulation is also obtained by
studying classifying spaces and their fibrations. Galewski & Stern constructed a classifying
space BTRI. Whether a topological manifold X can be triangulated depends on whether
X Ñ BTOP can be lifted to X Ñ BTRI. Skipping the details of the proof, we ultimately
have the theorem:

11



12 5 Galewski & Stern’s Work for n ě 5

Theorem 3. There exists a triangulation on a topological manifold M of dimension n ě 5
if and only if δ(∆(M)) P H5(M ; ker(µ)) is 0. If δ(∆(M)) = 0, distinct triangulations on
M can be parameterized by H4(M ; ker(µ)).

Using this theorem, we can deduce:

Theorem 4. If the exact sequence

0 Ñ ker(µ) ι
ÝÑ Θ3

µ
ÝÑ Z/2 Ñ 0 (1)

is split exact, then triangulations exist on all manifolds of dimension n ě 5.

Proof. If the short exact sequence (1) is split exact, then Dφ : Z/2 Ñ Θ3 s.t. µ ˝ φ = id.
Thus δ = δ(µ ˝ φ) = (δ ˝ µ) ˝ φ = 0. Therefore δ(∆(M)) ” 0, @Mn, n ě 5. Hence, by
Theorem 3, triangulations exist on all manifolds of dimension n ě 5.

In fact, the converse of Theorem 4 also holds.
Galewski & Stern constructed a “universal 5-manifold” N5 in their 1979 paper [GS79],

satisfying Sq1(∆(N)) ‰ 0. The original construction will be detailed in 5.3.
Using this condition, we can prove the converse of Theorem 4:

Theorem 5. If the “universal 5-manifold” N5 can be triangulated, then the exact sequence
(1) is split exact.

To prove this theorem, we supply a conclusion from homology theory:

Lemma 1. The short exact sequence (1) is split exact ðñ there exists a 3-dimensional
integer homology sphere Y such that µ(Y ) = 1 and 2[Y ] = 0 P Θ3 (i.e., Y#Y is the
boundary of an integer homology disk W 4).

Proof. ùñ: If the short exact sequence (1) splits, then Dφ : Z/2 Ñ Θ3 s.t. µ ˝ φ = id.
Let [Y ] = φ(1), then µ(Y ) = µ(φ(1)) = 1, and 2[Y ] = 2φ(1) = φ(2) = 0.

ðù: Let φ : Z/2 Ñ Θ3, φ(1) = [Y ], φ(0) = 0. Since 2[Y ] = 0, φ is a homomorphism,
and µ ˝ φ = id. Thus (1) splits.

Proof of Theorem 5. The proof uses contradiction. Assume the short exact sequence 1
does not split. Then by 1, @[Y ] P Θ satisfying µ(Y ) = 1, we have 2[Y ] ‰ 0, i.e., Θ3

contains no element of order 2.
Let Θ be the group generated by all 3-dimensional links in a given triangulation of N .

It is a subgroup of the 3-dimensional homology cobordism group Θ3. Let i : Θ ãÑ Θ3 be
the inclusion map.

Since the triangulation on N contains finitely many 3-dimensional links, Θ can be
written as a direct sum of finitely many cyclic groups, Θ = xh1y ‘ ¨ ¨ ¨ ‘ xhky, where each
term is either a free cyclic group or a finite cyclic group of prime power order.

We define a map γ : Θ Ñ Z/4. We only need to define it on thiu
k
i=1: 1’ If µ(hi) = 0,

let γ(hi) = 0; 2’ If µ(hi) = 1 and xhiy – Z, let γ(hi) = xhiy mod 4; 3’ If µ(hi) = 1
and the order of hi is pm, since µ is a homomorphism and the order of µ(hi) P Z/2 is 2,
then p = 2. Also, since Θ Ă Θ3 contains no element of order 2, m ě 2. We can also let
γ(hi) = xhiy mod 4. By definition, µ ˝ i = r ˝ γ.

12



5.3 Construction of the Universal 5-manifold 13

The obstruction determining whether a P.L. structure exists onN is denoted by c(N) P

H4(N ; Θ3), and by definition, there exists c1(N) P H4(N ; Θ) such that i(c1(N)) = c(N).
Thus

Sq1(µ(c(N))) = Sq1(µ(i(c1(N)))) = Sq1(r(γ(c1(N)))) = 0

since Sq1 ˝ r = 0. Also since µ(c(N)) = ∆(N), we obtain Sq1(∆(N)) = 0, contradicting
Sq1(∆(N)) ‰ 0.

The contrapositive of Theorem 5 states that if the exact sequence (1) does not split,
then N5 cannot be triangulated. If we letMn = N5 ˆT n´5, we also have Sq1(∆(M)) ‰ 0.
Similar to the previous conclusion, we have:

Theorem 6. If the exact sequence (1) is not split exact, then in every dimension n ě 5,
there exists a manifold that cannot be triangulated.

The contrapositive of this theorem is the converse of Theorem 4.
Thus we have the following conclusions:

All manifolds for n ě 5 are triangulable ðñExact sequence 1 splits (2)
ðñD[Y ] P Θ3 s.t. 2[Y ] = 0, µ(Y ) = 1 (3)
ðñTriangulation exists on N5 (4)

5.3 Construction of the Universal 5-manifold
The following construction process is essentially a translation of Galewski & Stern’s
1979 article published in “Geometric Topology” [GS79]: *A UNIVERSAL 5-MANIFOLD
WITH RESPECT TO SIMPLICIAL TRIANGULATIONS*. The original text had nu-
merous typos, and in this article, I have corrected the errors I could identify.

Let’s briefly review the conclusion obtained using the “universal 5-manifold”: if we
construct a closed 5-dimensional topological manifold N such that Sq1(∆(N)) ‰ 0,
then a triangulation exists on it if and only if triangulations exist for all manifolds with
n ě 5. This is why it is called a “universal 5-manifold”. Since the number of vertices
in a triangulation is finite, compactness is a necessary condition for the existence of a
triangulation on a manifold, so we need to make a closed manifold here.

Lemma 2. An n-dimensional cell complex (i.e., simplicial complex where the link of
every vertex is an (n ´ 1)-dimensional homology sphere) K with n ě 5, K ‰ ∅, is an
n-dimensional topological manifold |K| if and only if the links at the vertices of |K| are
all simply connected.

This is a corollary of Cannon & Edwards’ double suspension theorem. (I haven’t yet
researched how double suspension implies this lemma; the double suspension theorem
says that the double suspension of a 3-dimensional homology sphere is homeomorphic to
the 5-sphere.)

Next, we geometrically construct a closed 5-dimensional topological manifold N sat-
isfying Sq1(∆(N)) ‰ 0. I will use numerous illustrations to assist the discussion. Objects
constructed in different steps will be indicated in different colors, and the dimension of
geometric bodies will be marked with superscript n where possible.

13



14 5 Galewski & Stern’s Work for n ě 5

Take H3 to be any oriented 3-dimensional P.L. homology
sphere. It is the boundary of an oriented parallelizable 4-
dimensional P.L. manifold W with σ(W ) = 8. Let X =
W YH CH, where CH is the topological cone on H, and
let x be the cone point of CH.

Next, we paste a P.L. 1-handle D3 ˆ [0, 1] onto (CH ˆ 0 Y CH ˆ 1) Ă X ˆ [0, 1].

Figure 2: Note the choice of orientation for the two H’s, and the connection method of
D3

Figure 3: Here, for convenience of draw-
ing, the orientation issue is not highlighted

Let S = CH ˆ 0 YD3ĂH3 D3 ˆ I YD3ĂH3

CH ˆ 1. The way we paste the handle must
ensure BS = H#H (note it is not H# ´ H;
our connected sum here is the connected sum
of two homology spheres with the same orien-
tation).

It can be seen that BS is also a homology
sphere, and precisely H#H, and S it itself is
a homology disk « D4. To avoid confusion,
we use \mathbb{S} to represent the standard
sphere/ball, i.e., S.

The reason we emphasize that the con-
nected sum is not H# ´ H is that the latter preserves orientation compatibility across
the boundary of the connected sum, while the former reverses orientation when crossing
the boundary. Utilizing this property, and the fact that they are connected to opposite
sides of X ˆ [0, 1], we create a non-orientable geometric body X ˆ [0, 1] Y S. That is, its
first Stiefel–Whitney class w1(X ˆ [0, 1]YS) = 1 P H1(X ˆ [0, 1]YS;Z/2Z). Subsequent
embellishments from the construction will maintain w1 non-zero.

14



5.3 Construction of the Universal 5-manifold 15

Next, construct a topological cone T = S YH#H C(H#H) on the boundary of S.

Since S is a homology disk, forming a topological cone on its boundary yields T as a
4-dimensional homology sphere. In fact, T is a 4-dimensional homotopy sphere.

Let Y = X ˆ I Y (S YH#H C(H#H)), and let z be the cone point of C(H#H).
(Here Y is not a manifold; it is the union of a 5-dimensional manifold along its boundary
with a 4-dimensional manifold, so Y is merely a simplicial complex, or polyhedron.) The
polyhedron Y contains the sub-polyhedron T = S YH#H C(H#H).

Figure 4: Note that Y is formed by union of parts with different dimensions, so it cannot
be a manifold

Let P = Y YT CT , and let y be the cone point of CT . This yields P as a 5-dimensional
simplicial complex.

15



16 5 Galewski & Stern’s Work for n ě 5

Here two cones are drawn simultaneously, which is dazzling on paper. We try to
regain geometric intuition using the property that T is a homotopy sphere; the cone on
it is simply a homotopy disk of one higher dimension.

Figure 5: Wrapping a 3-dimensional homology circle H#H with a 4-dimensional spherical
membrane

Thus, forming a topological cone on the homotopy sphere T intuitively corresponds
to filling the interior of the sphere.

And BP is P.L. homeomorphic to W#gW YC(H#H), where g denotes the connected
sum along the boundary. (There is a typo in the original text, I temporarily use g as a
substitute) Because of the following calculation:

16



5.3 Construction of the Universal 5-manifold 17

Here I use the symmetric difference symbol ∆ loosely for brevity. Strictly speaking,
it should be the “union of the two” minus the “interior of the intersection of the two”.

Intuitively, BP looks like this:

Since W is a parallelizable manifold, all characteristic classes on it vanish, and rank-2
characteristic classes on C(H#H) also all vanish. Thus all Stiefel-Whitney classes of BP
are 0. Next, add an exterior collar C = BP ˆ [0, 1) along BP to obtain a 5-dimensional
simplicial complex Q.

We first observe that those 4-dimensional
links not PL homeomorphic to S4, such as
the links of z, y, xˆ 0, and xˆ 1, are sim-
ply connected (I only understood that the
link of y is T 4 which is a homotopy sphere,
thus π1 = 0). Therefore, by Lemma 2, Q
is a triangulated 5-dimensional manifold.

We next observe that the 3-dimensional
links on Q not P.L. homeomorphic to S3

are all sub-polyhedra on Q, such as L =
x ˆ [0, 1] Y y ˚ (x ˆ t0, 1u) – S1 and M =
y ˚ zY zˆ [0, 1). The links of 1-simplices in
L are all P.L. homeomorphic to H, and the
links of 1-simplices inM are all P.L. home-
omorphic to H#H. Since µ(H#H) = 0,
and all other links are standard spheres,
naturally µ is also 0. By Siebenmann’s
Theorem [C], there must exist a PL structure Σ on Q ´ L. Here Σ is not consistent
with the polyhedral structure of Q.
Theorem 7 (Siebenmann’s Theorem [C]). If a boundaryless topological manifold W n, n ě

5 is triangulable but has no P.L. structure, then there exists a 3-dimensional homology
sphere M3 with Rokhlin invariant µ(M3) = 1, such that the suspension Σn´3M3 is home-
omorphic to S⋉.

Our construction is nearly complete, but the manifold Q is currently open. We need
to “trim and patch” it into a closed manifold:

We can now use P.L. transversality relative to Σ|BPˆ(0,1) to obtain a compact connected
oriented 4-dimensional submanifold V Ă BP ˆ (0, 1). Its normal bundle is trivial, and it

17



18 5 Galewski & Stern’s Work for n ě 5

separates BP ˆ [0, 1) into two parts, A and B. Without loss of generality assume A Ą BP .
Then P Y cl[A] is a topological manifold, and B(P Y cl[A]) = V .

Since the normal bundle of V is trivial, all Stiefel-Whitney classes are 0, so there exists
a 5-dimensional P.L. manifold W such that V = W .

Finally, we define N5 = P YBP cl[A] YV W .

Figure 6: W is actually compact with boundary V ; for convenience, we draw it outside.

18



5.3 Construction of the Universal 5-manifold 19

Since there is a P.L. structure Σ on Q ´ L, N ´ L is also a PL manifold. Therefore,
the Poincaré dual of ∆(N) (the obstruction to the existence of P.L. structure, clearly
dominated by L here) is L. Also, the Poincaré dual of w1(N) (obstruction to orientation;
since w1(X ˆ [0, 1] Y S) is non-zero, w1(N) is also non-zero, caused by the co-oriented
connected sum H#H) restricted to P is X ˆ 1

2
(this can be thought of as migrating this

homology obstruction from the intersection line of the H#H connected sum to the cross-
section of the product space; removing this cross-section from N makes it an orientable
manifold).

By the definition of Wu class, for any manifold M and x P Hn´k(M), the Wu class
vk satisfies vk ! x = Sqk(x) P Hn(M), where Sqk is the Steenrod squaring operator:
Hm(M) Ñ Hm+k(M), satisfying Sq0 = idHm(M), so v0 = 1. Wu Wenjun’s theorem gives
the relationship between Wu classes and Stiefel-Whitney classes:
Theorem 8 (Wu). Sq(v) = w

Here Sq =
ř8

k=0 Sq
k, v =

ř8

k=0 vk, w =
ř8

k=0wk, and w0 = 1. Thus w1 = v1+Sq1(1).
By the Cartan formula Sqk(a ! b) =

ř

i+j=k Sq
i(a) ! Sqj(b), we know Sq1(a) =

Sq1(1 ! a) = Sq0(1) ! Sq1(a)+Sq1(1) ! Sq0(a) = Sq1(a)+Sq1(1) ! a, so Sq1(1) = 0,
and w1 = v1. (This proof can also be considered from the naturalness of Sq, i.e., there
exists a trivial continuous function f :M Ñ pt, so Sq1(1M) = Sq1(f˚1pt) = f˚(Sq1(1pt)),
while Sq1(1pt) P H1(pt;Z/2) = 0, so Sq1(1M) = 0.)

In summary, Sq1(x) = v1 ! x = w1 ! x.
Thus Sq1(∆(N)) = w1(N) ! ∆(N). However, xw1(N) ! ∆(N), [N ]y ‰ 0 is the

intersection number of L and X ˆ 1
2
(L X (X ˆ 1

2
) ‰ ∅), so Sq1(∆(N)) ‰ 0. That is, N

is the required 5-dimensional manifold.
To summarize the construction idea above: We want to make a 5-dimensional manifold

N where Sq1(∆(N)) is a non-zero element in the 5th cohomology group. From calcula-
tions regarding characteristic classes, it is the cup product of the 1st Stiefel-Whitney class
w1 P H1(N ;Z/2) and the Kirby-Siebenmann class ∆(N) P H4(N ;Z/2). Since w1 is the
obstruction to orientation and ∆ is the obstruction to the existence of a P.L. structure,
geometrically, we need to find a 4-dimensional closed submanifold (corresponding to w1)
and a 1-dimensional closed submanifold (corresponding to ∆) in a non-orientable man-
ifold without a P.L. structure. These are elements in homology classes, and removing
them gives the manifold orientation and a P.L. structure respectively. Thus they are the
geometric obstructions for both, and their Poincaré duals are the elements in the corre-
sponding cohomology classes. During the construction, we repeatedly form topological
cones, introducing many cone points. Cone points are often not manifold points (their
links may not be spheres), so we need to add collars to “hide” the cone points. However,
this results in an open manifold, so we perform some “trimming and patching” surgeries
to obtain a closed manifold.

5.3.1 A More Direct Construction

[Man24] gives another example where Sq1(X) ‰ 0. Leveraging the theory of intersection
forms of 4-manifolds, its construction is more direct (though this theory was published
later than Galewski & Stern’s construction), coming from Kronheimer:

Let X = ˚(CP2#CP2) be a simply connected 4-manifold with intersection form(
1 0
0 ´1

)
, congruent to ´

(
1 0
0 ´1

)
19



20 6 Manolescu’s Work

Here ‘˚’ indicates it is another simply connected closed 4-manifold with the same inter-
section form as CP2#CP2, homotopy equivalent to it but not homeomorphic.

Freedman’s series of conclusions in 1982 [Fre82] proved the existence of such manifolds:
Generally, if an intersection form is odd (if xTQx is always even, Q is called an even form,
otherwise odd), there are exactly two homeomorphism types of topological manifolds with
it as an intersection form, and at most one of them admits a smooth structure. The pres-
ence or absence of a smooth structure is distinguished by the Kirby-Siebenmann invariant
∆. Since CP2#CP2 has a natural smooth structure, X is the other homeomorphism type
without a smooth structure, and ∆(X) ‰ 0.

Freedman’s work also showed that since there exists a congruence transformation from
the intersection form of X to its negative matrix, there exists an orientation-reversing
homeomorphism f : X Ñ X. Let M5 be the mapping torus of f . That is,

M = (X ˆ I)/(x, 0) „ (f(x), 1).

Since ∆(X) ‰ 0 P H4(X;Z/2) = Z/2, we have ∆(M) ‰ 0. Also, the mapping torus
glues the boundaries of the cylinder “with the same orientation” (relative to the base, but
reversing fiber orientation), making M a non-orientable manifold (similar to the Klein
bottle), so w1(M) ‰ 0. Similar to the conclusion in Galewski & Stern’s construction, we
have:

Sq1∆(M) = ∆(M) ! w1(M) ‰ 0.

6 Manolescu’s Work
Manolescu’s work uses techniques from gauge theory. Specifically, it is a type of Floer
homology called Pin(2)-equivariant Seiberg-Witten Floer homology. Gauge theory is the
study of specific elliptic partial differential equations, first appearing in physics to reflect
strong and weak interactions between particles. In the 1980s, Donaldson pioneered the ap-
plication of gauge theory to low-dimensional topology. Floer homology, constructed from
gauge theory, is an invariant of 3-manifolds useful in studying cobordism. (A cobordism
between two 3-manifolds Y, Y 1 is a 4-manifold with initial boundary Y and final boundary
Y 1.) Atiyah called Floer homology a Topological Quantum Field Theory (TQFT). The
main property of TQFT is that a cobordism from Y to Y 1 induces a map between the
corresponding invariants of the two 3-manifolds (in this case, a map between their Floer
homologies). For standard homology theories, we need an actual map (not a cobordism)
between Y and Y 1 to obtain a map between homologies. Different types of Floer homology
(e.g., Seiberg-Witten, Heegaard Floer) are primary tools for studying cobordisms between
3-manifolds, and resolving the Triangulation Conjecture is just one application.

6.1 Brief Summary of the Proof
From the work of Galewski-Stern and Matumoto, we know that whether the Triangulation
Conjecture holds is equivalent to whether the short exact sequence 1 splits. Splitting is
equivalent to D[Y ] P Θ3, 2[Y ] = 0, µ(Y ) = 1.

If we want to disprove the Triangulation Conjecture, we simply need to show that
such a [Y ] does not exist. We just need to find a lift from the Rokhlin homomorphism

20



6.2 Kronheimer-Mrowka’s Construction Method 21

µ : Θ3 Ñ Z/2 to M : Θ3 Ñ Z, i.e.,

Z

Θ3 Z/2

mod 2
M

µ

Equivalently, we need to find an invariantm(Y ) P Z for an (oriented) integer homology
sphere Y satisfying:

1. m(Y ) is a homology cobordism invariant, thus inducing (descending to) a map
M : Θ3 Ñ Z;

2. The mod 2 reduction of m(Y ) is µ(Y );

3. m satisfies m(Y1#Y2) = m(Y1) +m(Y2), so M is a group homomorphism.

Thus, if µ(Y ) = 1, the order of [Y ] cannot be 2.
So far, we have not found an invariant satisfying all three conditions above. The

Casson invariant λ(Y ) is a lift of µ(Y ), but it is not a homology cobordism invariant.
The Frøyshov invariant h(Y ), the map δ derived from Monopole Floer homology, and
the Ozsvath-Szabo correction term d(Y ) derived from Heegaard Floer homology are all
homomorphisms from Θ3 to Z, but they are not lifts of µ.

However, Manolescu used Pin(2)-equivariant theory to find homology cobordism
invariants (invariant under homology cobordism relation) α, β, γ. Although they do not
satisfy the above conditions (β is not a homomorphism; for example, let Y = Σ(2, 3, 11)
be the Brieskorn sphere, we have β(Y ) = 0, but β(Y#Y ) = 1), β has the property:
β(´Y ) = ´β(Y ). This is sufficient to disprove the Triangulation Conjecture.

Theorem 9.
0 Ñ ker(µ) ι

ÝÑ Θ3
µ
ÝÑ Z/2 Ñ 0

is not split exact.

Proof. Proof by contradiction. Assume the exact sequence splits. Then there exists
[Y ] P Θ3, 2[Y ] = 0, and µ(Y ) = 1 P Z/2. Then β(Y ) P Z is an odd number. We have
β(´Y ) = ´β(Y ). Since the order of Y is 2, Y and ´Y are homology cobordant, meaning
β(Y ) = β(´Y ). This implies β(Y ) = 0, a contradiction.

Although the invariant β constructed by Manolescu solved the Triangulation Conjec-
ture, it does not satisfy β(Y1#Y2) = β(Y1) + β(Y2), meaning it is not a homomorphism.
Whether there exists a homomorphism M : Θ3 Ñ Z that is a lift of µ remains an open
problem.

6.2 Kronheimer-Mrowka’s Construction Method
First, we introduce some basic concepts: Monopole Floer homology consists of three
finitely generated graded F[U ]-modules, where deg(U) = ´2, meaning U acting on an
element of the graded group reduces the degree by 2; F = Z/2. The definition of Monopole
Floer homology requires the use of a spinc structure on the manifold. Specifically, it is

21



22 6 Manolescu’s Work

a topological invariant defined on any orientable closed 3-manifold (orientable closed 3-
manifolds have a unique spin structure, and thus a unique spinc structure). Disproving
the Triangulation Conjecture only requires its properties on integer homology spheres.
Later we will prove that the three functions α, β, γ on integer homology spheres derived
from it are invariants under the cobordism relation, and thus can be viewed as maps
Θ Ñ Z.

Therefore, for brevity of construction, we only consider the Monopole Floer homology
of integer homology spheres Y , namely }HM(Y ), yHM(Y ), and HM(Y ). They correspond
respectively to the homology of a manifold with boundary of infinite dimension,
the homology relative to the boundary, and the homology of the boundary. Thus, it fits
into the exact triangle:

}HM(Y ) yHM(Y )

HM(Y )

j˚

p˚i˚

In fact, the corresponding cohomology groups of these homologies are isomorphic to the
homology groups of ´Y .

Regarding the construction of this infinite-dimensional manifold with boundary, there
are two methods. One is given by Kronheimer and Mrowka [KM07]; Francesco Lin’s two
articles [Lin16][Lin17] also introduce how to construct Seiberg-Witten Floer homology
using this method, with the idea of using “real blow-up” to handle reducible critical points.
The other is given by Manolescu adopting Furuta’s “finite dimensional approximation”
method, with the idea of applying finite-dimensional Morse theory to infinite dimensions.

We will outline the proof idea of the first method and detail the construction process
of the second method in the next section.

The infinite-dimensional manifold with boundary constructed by the first method is
Bσ0 ˆ ES1/S1. The process and reasoning are as follows:

First, we give some basic concepts to be used.
For an integer homology sphere Y , let g be a Riemannian metric on Y , and take the

Levi-Civita connection ∇ on TY . Consider a trivial C2 bundle S Ñ Y . Define the action
of TY on S:

ρ : TY Ñ su(S) Ă End(S)

mapping an orthonormal frame te1, e2, e3u of TY to Pauli matrices, i.e.,

ρ(e1) =

(
i 0
0 ´i

)
, ρ(e2) =

(
0 ´1
1 0

)
, ρ(e3) =

(
0 i
i 0

)
Using the canonical isomorphism TY – T ˚Y given by the metric and complex linear
extension, we can induce a map, still denoted as ρ,

ρ : T ˚Y b C Ñ sl(S) Ă End(S)

Let A be a spin connection on S Ñ Y , i.e., the covariant derivative ∇A satisfies
∇A(ρ(v)ϕ) = ρ(∇v)ϕ+ ρ(v)∇aϕ, where v P Γ(TY ), and ϕ P Γ(S) is a spinor.

The trivialization of TY provides a trivial connection A0, and a spin connection can
be written as A = A0 + a, where a P Ω1(Y ; iR).
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6.2 Kronheimer-Mrowka’s Construction Method 23

The configuration space C(Y ) consists of (a, ϕ) P Ω1(Y ; iR) ‘ Γ(S), where A0 + a is a
spin connection on S, and ϕ P Γ(S) is a spinor.

Let the gauge group be G(Y ) = tf : Y Ñ S1u. It acts naturally on C(Y ):

f ¨ (a, ϕ) = (a ´ f´1df, f ¨ ϕ).

When ϕ ‰ 0, this action is free. For (a, 0), it has a stabilizer subgroup isomorphic to
S1, namely the constant maps Y Ñ S1. Therefore, fixing a base point y0 P Y , the based
gauge group G0(Y ) := tf : Y Ñ S1, f(y0) = 1u acts freely on C(Y ). Thus we can define
the infinite-dimensional manifold

B0(Y ) = C(Y )/G0(Y )

By definition, the S1-action on B0(Y ) is free at points other than reducibles.
Define the Dirac operator /B : Γ(S) Ñ Γ(S),

/B(ϕ) =
3

ÿ

i=1

ρ(ei)∇eiϕ

More generally, for a spin connection A, we can define the “twisted Dirac operator”
/BA := ρ ˝ ∇A, i.e.,

Γ(S)
∇A
ÝÝÑ Γ(T ˚ ˆ S)

ρ
ÝÑ Γ(S)

.
Next, define the Chern-Simons-Dirac functional CSD : C(Y ) Ñ R,

CSD(a, ϕ) =
1

2

ż

Y

(xϕ, /Bϕ+ ρ(A)ϕydν ´ a ^ da)

where dν is the volume element of the Riemannian metric on Y .
Since Y is an integer homology sphere, CSD is a gauge invariant, meaning its value is

invariant under the action of G(Y ). Thus it can be viewed as an S1-invariant functional
on B0(Y ).

Similar to Morse homology, the critical points of CSD here will serve as generators for
Monopole Floer homology, and solutions to the flow equation ẋ = ´gradCSD(x(t)) will
serve as boundary maps.

The gradient of CSD is

gradCSD(a, ϕ) = (˚da ´ 2ρ´1((ϕ b ϕ˚)0), /Bϕ+ ρ(a)ϕ) P C(S),

where ϕ˚ denotes the dual section, so ϕ b ϕ˚ is an endomorphism on S, and (ϕ b ϕ˚)0
denotes its traceless part. The critical points of CSD are determined by the Seiberg-
Witten equations:

ĄSW (a, ϕ) =

#

˚da ´ 2ρ´1(ϕ b ϕ˚)0 = 0,

/Bϕ+ ρ(a)ϕ

However, the current objects cannot be realized as simple Morse homology due to
problems such as:

1. Limit points on B0/S
1 are not isolated, so the S-W equations need perturbation to

obtain isolated critical points;
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24 6 Manolescu’s Work

2. The Hessian matrix of CSD at critical points may have infinitely many positive
eigenvalues and infinitely many negative eigenvalues, so the index (number of neg-
ative eigenvalues) of critical points is not well-defined.

3. Reducible critical points are not manifold points of B0/S
1.

The first two problems can be overcome by standard methods of Floer theory. To solve
the third problem, there are options: (a) ignore reducible critical points; (b) use the “real
blow-up” operation. However, ignoring reducible critical points brings many problems:
for instance, the result will not be a diffeomorphism invariant, and much topological
information (such as the key information to disprove the Triangulation Conjecture) lies
in the reducible critical points.

The real blow-up operation was pioneered by Kronheimer-Mrowka. Consider Cσ(Y ) :=
C(Y ) ˆ Rě0. The map π : Cσ(Y ) Ñ C(Y ), (a, ψ, s) ÞÑ (a, s ¨ ψ) is the Blow-down map.
Let Bσ0 = π(Cσ(Y ))/G0(Y ) be an infinite-dimensional manifold with boundary.

For a general compact Lie group G, if it acts on space X, one can perform the Borel
construction: define the equivariant cohomology of G as HG

˚ (X;F) := H˚(X ˆG EG;F),
where EG Ñ BG is the universal principal G-bundle. Thus EG is a contractible space
with free G action, and X ˆG EG = (X ˆ EG)/G is the orbit space of the G action,
where the action of g P G on the product space is defined as g ¨ (x, e) = (gx, eg´1). Since
BG = EG/G, there exists a fibration

X X ˆG EG

BG

π

Specifically, if G acts freely on X, then X ˆ EG/G = X/G.
And from this construction, the homology graded group HG

˚ (X;F) is a module over
the cohomology ring H˚

G(pt;F) := H˚(BG;F), where the action of the cohomology ring
on the homology group is the cap product.

Specifically, when G = S1, BG1 = CP8, and H˚(CP8,F) – F[U ], with deg(U) = ´2.
The cobordism relation induces homomorphisms between F[U ] modules.

In this case, we obtain }HM = HS1

˚ (Bσ0 (Y );F), which is isomorphic to F[U,U´1]/F[U ].
It is an infinitely long single chain, called a “tower”. The degree of the lowest non-trivial
homology group in the sequence is an invariant of homology cobordism. Dividing it by 2
yields a surjective homomorphism δ : Θ3 Ñ Z, and δ(Y ) ” µ(Y ) mod 2. However, the
chain complex here is not a topological invariant; it depends on the choice of metric g. In
fact, δ here is not a lift of µ over Z.

Although S1-equivariant Monopole Floer homology failed to bring the invariant we
needed, if we consider the Pin(2) action, the Seiberg-Witten equations will display more
symmetry and yield the required invariants.

Pin(2) := S1 Y jS1 Ă C Y jC Ă H. Its action on B0(Y ) is defined as follows: S1 acts
on C2 by complex multiplication, while j acts on (v1, v2) P C2 to give (´v̄2,´v̄1), and
j ¨ (a, ϕ) := (´a, ϕj).

Similar to the S1-equivariant case, HPin(2)
˚ (Bσ0 (Y );F) := H˚(Bσ0 (Y )ˆPin(2)EPin(2);F),

|HS = H
Pin(2)
˚ (Bσ0 (Y );F), and we can further obtain xHS,HS. To avoid repetition, we will

formally prove (using the Leray spectral sequence) in the next section that H˚
Pin(2)(pt;F) =
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H˚(BPin(2);F) – F[v, q]/(q3), where deg(v) = ´4, deg(q) = ´1. Thus |HS is a module
over R = F[v, q]/(q3).

Here we have a Gysin sequence linking the two types of Monopole Floer homology:
on }HM , regarding v as U2 and q as the 0 map, we have

¨ ¨ ¨ Ñ |HS(Y )
¨q
ÝÑ |HS(Y ) Ñ }HM(Y ) Ñ |HS(Y ) Ñ ¨ ¨ ¨

which is a sequence of graded modules over R.
As an F[v]-module, }HS(Y ) has 3 infinitely long towers, linked to each other by multi-

plication by q. The degrees of their lowest non-trivial homology groups are directly related
to µ(Y ). Let the degrees of the lowest non-trivial homology groups of the three sequences
be A,B,C. Then α = A

2
, β = B´1

2
, γ = C´2

2
are invariants of Y , satisfying α ě β ě γ, and

” µ(Y ) mod 2. They are also homology cobordism invariants, i.e., can be viewed as maps
Θ3 Ñ Z. Furthermore, they satisfy α(´Y ) = ´γ(Y ), β(´Y ) = ´β(Y ), γ(´Y ) = ´α(Y ).
The specific proof will be shown in the next section.

6.3 Manolescu’s Construction Method
Manolescu adopted Furuta’s “finite dimensional approximation” method, applying finite-
dimensional Morse theory to infinite dimensions. The process of finite dimensional ap-
proximation is “uniformly convergent,” so this method works.

The previous construction process is consistent with Kronheimer and Mrowka’s ap-
proach. Here we pick up from after the construction of the Seiberg-Witten equations:

6.3.1 Seiberg-Witten Equations in Coulomb Gauge

Define the (global) Coulomb slice

V := ker(d˚) ‘ Γ(S) Ă C(Y, s)

where s is the unique spinc structure on the homology sphere Y , and d˚ : Ωk(Y ) Ñ

Ωk´1(Y ) is the codifferential operator, related to the Hodge star operator and the exterior
differential operator by d˚ω = (´1)n(k+1)+1 ˚ d ˚ ω.

We can view V as the quotient space of the “normalized gauge group” G0 Ă G action,

G0 = tu : Y Ñ S1
ˇ

ˇu = eξ, ξ : Y Ñ iR,
ż

Y

ξ = 0u

Since Y is an integer homology sphere, we have the Hodge decomposition

Ω1(Y ) = ker(d) ‘ ker(d˚)

Fix (a, ϕ) P V . Let πV : T(a,ϕ)C(Y, s) Ñ V be the linear projection such that the kernel
of the projection is tangent to the G0 orbit. Let TG0 be the tangent space of the G0 orbit,
so ker πV Ă TG0.

Recall the previously defined Seiberg-Witten equations

ĄSW (a, ϕ) =

#

˚da ´ 2ρ´1(ϕ b ϕ˚)0 = 0,

/Bϕ+ ρ(a)ϕ

25



26 6 Manolescu’s Work

Now let SW := πV ˝ ĄSW : V Ñ V .
Using the S1 action eiθ : (a, ϕ) ÞÑ (a, eiθϕ), we obtain a bijection

tFlow lines determined by ĄSW u/G 1:1
ÐÑ tFlow lines determined by SW u/S1

Further let πelc : T(a,ϕ)C(Y, s) Ñ TKG0, having ker πelc Ă TG0. The image of πelc is
called the extended local Coulomb slice Kelc, which is the orthogonal complement of the
G0 orbit.

On the Coulomb slice V , the SW equation can be written as the sum of 1 linear part
and 1 continuous part

SW = l + c

where l, c : V Ñ V are defined as

l(a, ϕ) =(˚da, /Bϕ) (5)
c(a, ϕ) =πV ˝ (´2ρ´1(ϕ b ϕ˚)0, ρ(a)ϕ) (6)

Let V(k) be the L2
k completion of V , where k " 0 P N. Here we take k ą 5, then

l : V(k) Ñ V(k´1) is a linear, self-dual, Fredholm operator, while c : V(k) Ñ V(k´1) is a
compact operator.

Below is the compactness theorem for the Seiberg-Witten equations suitable for the
Coulomb gauge.

Theorem 10. Fix k ą 5. There exists R ą 0 such that all critical points of SW and flow
lines between critical points are contained in the ball B(R) Ă V(k).

6.3.2 Finite Dimensional Approximation

Seiberg-Witten Floer homology is similar to the Morse homology of SW on V . However,
compared to finding a generic perturbation on the Seiberg-Witten equations to realize
transversality conditions, it is more convenient to use the method of finite dimensional
approximation.

In the previous construction, V is an infinite-dimensional space. Its finite dimensional
approximation is

V µ
λ =

à

λăζăµ

V (ζ), λ ! 0 ! µ

where V (ζ) is the eigenspace for eigenvalue ζ.
We can then replace SW = l + c with

l + pµλc : V
µ
λ Ñ V mu

λ

where pµλ : V Ñ V µ
λ is the L2 projection. Thus SW µ

λ := l + pµλc is a vector field on V µ
λ .

For finite dimensional approximation, there is the following compactness theorem:

Theorem 11. There exists R ą 0 such that for all µ " 0 " λ, all critical points of SW µ
λ

in B(2R), and all flow lines connecting critical points in B(2R) lie in a smaller ball B(R).

The idea of the proof is to use the fact that in B(2R), l + pµλc converges uniformly to
l + c, so the previous theorem can be used.
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6.3.3 Conley Index

In the finite-dimensional case, the Morse homology of a compact manifold is exactly the
usual homology. Now we have to deal with the non-compact space B(2R) Ă V µ

λ . In this
case, Morse homology is the homology on the Conley index.

For a fixed m-dimensional manifold M and a flow tϕtu, the Conley index can be
defined on an isolated invariant set S of tϕtu.

Definition 10. For a subset A Ď M , define

InvA = tx P M
ˇ

ˇϕt(x) P A, @t P Ru

Definition 11. If a compact set S Ă M satisfies S = InvA Ď IntA, where A is a compact
neighborhood of S, then S is called an isolated invariant set of M .

Definition 12. For an isolated invariant set S, the Conley index I(S) := N/L, where
L Ď N Ď M , and L,N are compact sets satisfying

1. Inv(N ´ L) = S Ă Int(N ´ L)

2. @x P N , if Dt ą 0 such that ϕt(x) R N , then Dτ P [0, t) such that ϕτ (x) P L

3. x P L, t ą 0, ϕ[0,t](x) Ă N ñ ϕ[0,t](x) Ă L

That is to say, all flow lines exiting N must pass through L.
Now, we take A = B(2R), so S = InvA. From the previous theorem, S is the union

of all isolated points and flow lines therein. Next, N can be taken as a manifold with
boundary, and L Ă BN is a codimension 0 submanifold of BN , so L itself also has a
boundary.

It can be proven that if the flow lines satisfy the Morse-Smale condition, then the
Morse homology of B(2R) is isomorphic to the reduced singular cohomology of I(S).

6.3.4 Seiberg-Witten Floer Homology

Now we define the S1-equivariant Seiberg-Witten Floer homology as an S1-equivariant
Borel homology,

SWFHS1

˚ (Y ) := H̃S1

˚+shift(I
µ
λ ), µ " 0 " λ

Here Iµλ is the Conley index of Sµ Ă V µ
λ , and the degree of the graded group is shifted

by an amount depending on λ, µ. The shift amount will be specified below.
In fact, the above constructions are all Pin(2)-equivariant as well, because on a 3-

dimensional homology sphere, the spinc structure is a spin structure.
Therefore, we can obtain Pin(2)-equivariant Seiberg-Witten Floer homology. Specifi-

cally, we take coefficients in F = Z/2:

SWFHPin(2)
˚ (Y ;F) := H̃

Pin(2)
˚+shift(I

µ
λ ;F), µ " 0 " λ
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28 6 Manolescu’s Work

6.3.5 Invariant Properties of SWFH and Determination of the Shift

Although λ, µ in the definition can vary, when they are large enough, the defined Floer
homologies SWFHS1

˚ (Y ) and SWFHPin(2)
˚ (Y ) are invariants of Y .

Consider the flow equation ẋ = ´SW µ
λ (x(t)) determined by SW µ

λ = l+pµλc : V
µ
λ Ñ V µ

λ ,
and examine the change in the Conley index Iµλ as µ, λ change. If we change µ ⇝ µ1 ą

µ " 0, we have the decomposition

V µ1

λ = V µ
λ ‘ V µ1

µ
... ... ...

l + pµ
1

λ c ⇝ l + pµλ ‘ l + pµ
1

µ c

and l + pµ
1

µ depends almost entirely on the linear part l.
And the Conley index remains invariant under deformation, meaning if we have a

family of flows φ(s), s P [0, 1], such that

S(s) = Inv(determined by φ(S) on B(R)) Ă IntB(R), s P [0, 1]

then I(S(0)) » I(S(1)).
At this point, let φ(0) be l + pµ

1

λ . It can be deformed to φ(1), defined as the direct
sum of the flow of l + pµλ and the linear flow l on V µ1

µ . Thus we obtain

Iµ
1

λ = I(S(0)) = I(S(1)) = Iµλ ^ Iµ
1

µ (l)

where Iµ1

µ (l) is the Conley index of the linear flow ẋ = ´l(x) on V µ1

µ .
Since l has only positive eigenvalues on V µ1

µ , it implies

Iµ
1

µ (l) = S(Morse index) = S0

Thus Iµ
1

λ = Iµλ , µ, µ
1 " 0.

On the other hand, when changing the lower bound λ of negative eigenvalues, the
Conley index is

Iµλ1 = Iµλ ^ Iλλ1(l)

where Iλλ1(l) = S|λ´λ1|. Therefore, the shift amount is the dimension of V 0
λ , i.e.,

H̃S1

˚+dimV 0
λ
(Iµλ )

When µ " 0 " λ, it is independent of the values of λ, µ. The conclusion for Pin(2) is
the same.

To show that SWFH is a topological invariant, we should also prove that it is in-
dependent of the choice of Riemannian metric g. Fix µ, λ. When g is perturbed, e.g.,
continuously changing from g0 to g1, the dimension of V µ

λ does not change. However, the
dimension of V 0

λ may change. This change is determined by the “spectral flow” of the
linear operator l, which counts with sign the number of eigenvalues crossing zero as g
changes.

For the linear part l = (˚d, /B), since H1 = 0, ˚d has no zero eigenvalues. However,
/B has spectral flow. Choose a spin 4-manifold W with boundary (Y, g), and attach a
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cylindrical end to the boundary, i.e., W 4 YY Y ˆ [0, 1]. Then the spectral flow of /B is
determined by the following formula:

SF (/B) = n(Y, g0) ´ n(Y, g1)

= 2 index(/B) on Y ˆ [0, 1]

Here index(/B) = ker /B ´ coker/B represents the Atiyah-Singer index of /B.

n(Y, g) = ´2 (indexC( /DW ) +
σ(W )

8
) P 2Z

Thus n(Y, g) ” 2µ mod 4.
So we finally obtain

SWFHS1

˚ (Y ) := H̃S1

˚+dimV 0
λ ´n(Y,g)(I

µ
λ )

and
SWFHPin(2)

˚ (Y ;F) := H̃
Pin(2)
˚+dimV 0

λ ´n(Y,g)
(Iµλ ;F)

are topological invariants of Y .
Similarly, generalized homology theories can be constructed, such as K-theory KPin(2)

˚ ,
or Borel homology H̃G

˚ , where G is any subgroup of Pin(2).

6.3.6 Seiberg-Witten Floer Stable Homotopy Type

In fact, the above construction yields an invariant stronger than homology groups, namely
the Pin(2)-equivariant stable homotopy type SWF . We will explain its relationship with
SWFH later.
Definition 13. Without requiring equivariance, a suspension spectrum is (X,n), where
X is a topological space and n P Z. We consider (X,n) as formally de-suspending X n
times, i.e.,

(X,n) = Σ´nX

And the n-th suspension of X is

ΣnX = Sn ^ X.

Let [X,Y ] denote the homotopy class of pointed maps. We can define a category
where objects and morphisms are:

Obj = (X,n)

Mor = [(X,n), (Y,m)] =

$

&

%

lim
NÑ8
N´nPZ

[ΣN´nX,ΣN´nY ], m ´ n P Z

0 m ´ n R Z

We can similarly define Pin(2)-equivariant suspension spectra.
Since Pin(2) can be viewed as two symmetric S1 connected by reflection j, it has the

following irreducible representations:
$

’

’

’

’

&

’

’

’

’

%

R trivial action

R̃

#

j multiplication by ´ 1

S1 trivial action
H Pin(2) left multiplication
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Therefore, a Pin(2)-equivariant suspension spectrum is a quadruple (X,nR, nR̃, nH).
The finite dimensional approximation of V can be decomposed as

V µ
λ – R̃a ‘ Hb

where R̃ is the component for the sign representation, and H is the component for the
spinor representation.

Therefore, we define the Seiberg-Witten Floer equivariant spectrum of Y as

SWF (Y ) := ΣH
n(Y,g)

4 Σ´V 0
λ Iµλ

For a linear space V representing a group G, ΣVX = X ^ SV , where SV denotes
the one-point compactification of V , which naturally has a G action, so ΣVX also has a
natural G action.

It satisfies
HPin(2)(SWF (Y );F) = SWFHPin(2)(Y ;F).

6.3.7 Homology Cobordism Invariants α, β, γ

We will use SWFHPin(2)(Y ;F) to construct a map β : ΘH
3 Ñ Z satisfying

1. β(´Y ) = ´β(Y )

2. β(Y ) ” µ(Y ) mod 2

In this process, we will also obtain two other maps α, γ : ΘH
3 Ñ Z.

In the KM construction process, we mentioned the Borel homology group HPin(2)
˚ (X),

which can be viewed as a module over the cohomology ring (Borel cohomology)H˚
Pin(2)(pt) =

H˚(BPin(2)) – F[v, q]/(q3). Below we give the complete proof: For Pin(2) Ă SU(2), the
inclusion map i induces a fibration

Pin(2) SU(2)

RP2

i

ψ

Here ψ is the quotient map of the Hopf fibration with the involution on S2 (e.g., the
antipodal map). This fibration continues to induce another fibration:

RP2 BPin(2)

BSU(2) = HP8

The cohomology ring of RP2 is generated by a generator q, acting as shown:

F F F
q q

The cohomology ring of BSU(2) = HP8 is generated by a generator v, acting as
shown:
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F 0 0 0 F 0 0 0 F ¨ ¨ ¨

v v

Therefore, by the Leray-Serre spectral sequence of the above fibration, BPin(2) has
the form:

F F F 0 F F F 0 ¨ ¨ ¨

v

q

v

q

v

q q

Thus we obtain the isomorphism H˚(BPin(2)) – F[v, q]/(q3), where deg v = 4, deg q =
1.

So the degrees of action of this cohomology ring on the homology graded group are
deg q = ´1, deg v = ´4.

Now we derive the three “towers” in the homology graded group sequence:
Let (Iµλ )

S1 denote the fixed point set of Iµλ under the action of S1 Ă Pin(2), which
contains points in the reducible locus t(a, ϕ)

ˇ

ˇϕ = 0u.
On this locus, SW generates a linear flow determined by ˚da.
Thus from this perspective, (Iµλ )S

1
= SdimV 0

λ is a sphere.
Also since

SWF (Y ) := ΣHn(Y,g)
4 Σ´V 0

λ Iµλ

therefore
(SWF (Y ))S

1

= Sn(Y,g)

Intuitively, SWF (Y ) consists of a reducible part Sn(Y,g) and an irreducible part com-
posed of some free cells. Thus we have

Sphere Ă SWF (F ) Ñ SWF (Y )/Sphere ö Pin(2) acts freely

Therefore
SWFHPin(2)

˚ (Y ;F) = H̃Pin(2)
˚ (SWF (Y );F)

is a module over F[q, v]/(q3).
For the equivariant cohomology ring, by the Localization Theorem, we obtain

V ´1H̃˚
Pin(2)(SWF (Y );F) = V ´1H̃˚

Pin(2)(S
n(Y,g);F)

Note that H̃˚
Pin(2)(S

n(Y,g);F) = H˚´n(Y,g)(BPin(2);F).
Since both homology and cohomology here take field coefficients, Borel homology

is simply the dual of Borel cohomology. Additionally, we can apply the localization
theorem to Borel homology, thus obtaining the complex structure of SWFH

Pin(2)
˚ , i.e.,

the equivariant cellular structure of the Conley index, in the following form:
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...

F

0 F

F F

F F F

F F

0

F

F

F

v

q

v

q

q

v

q

q

v

q

q

Where the finite part can be a vector space of any dimension, connected by v, q actions
or B; additionally, there exists an infinitely long homology sequence composed of three
infinitely long towers acted on by v. The infinite-dimensional part corresponds to the
S1-fixed point set of SWF (Y ), and the finite part corresponds to free cells.

Since (SWF (Y ))S
1
= Sn(Y,g), and n(Y, g) ” 2µ mod 4, we know:

• The degrees of all groups on the first tower from the bottom are 2µ mod 4.

• The degrees of all groups on the second tower are 2µ+ 1 mod 4.

• The degrees of all groups on the third tower are 2µ+ 2 mod 4.

Now take the lowest degrees of the three towers as A,B,C P Z respectively. Then we
can construct

α =
A

2
, β =

B ´ 1

2
, γ =

C ´ 2

2

as invariants of Y , and α, β, γ ” µ mod 2.
Furthermore, due to the module structure (i.e., q cannot map a 0 element to a non-zero

element), we must have α ě β ě γ.
Next we prove that they are indeed homology cobordism invariants.
Let W 4 be a smooth oriented spin(4) cobordism, with b1(W ) = 0, and BW =

(´Y0) Y Y1 (in our actual application, we only care about the case where Y0, Y1 are
homology spheres). Consider the SW equations on W , and performing finite-dimensional
approximation on the solution space, we will get conclusions similar to the 3D case. The
final result is that we will obtain a stable equivariant map between two suspension spectra:

ΨW : ΣmHSWF (Y0) Ñ ΣnR̃SWF (Y1)

Here mH is the direct product of m quaternion type representations, nR̃ represents
the direct product of n sign representations. And

m =
´σ(W )

9
= index( /D), n = b+2 (W ) = index(d+)
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Now, when W is a homology cobordism between homology spheres Y0, Y1, there exists
a unique spin(4) structure on W , and b1(W ) = 0, m = n = 0. Let FW be the module
homomorphism induced by ΨW between Pin(2)-equivariant SWFH, with the form

... ...

F F

F F

F F

0 0

F F

F F

F F

0 0

Y0 Y1

v

FW

v

v v

v v

By equivariant localization, when k " 0, FW is an isomorphism, and FW is a module
map, i.e., there is a commutative diagram

F F

F F

FW

v v

FW

Therefore, we must have

α(Y1) ě α(Y0)

β(Y1) ě β(Y0)

γ(Y1) ě γ(Y0)

From the module map from SWFH(Y1) to SWFH(Y0), we can get inequalities in the other
direction, so we have

α(Y1) = α(Y0)

β(Y1) = β(Y0)

γ(Y1) = γ(Y0)

This shows that α, β, γ are homology cobordism invariants.

6.3.8 Duality

So far we have proved that β is a homology cobordism invariant equal to µ mod 2. We are
one step away from the invariant we need, which is that it should satisfy β(´Y ) = ´β(Y ).

For this, we are concerned with the changes in the topological invariant SWFH
caused by reversing the orientation of the 3-dimensional homology sphere (Y, g) to become
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(´Y, g). At this time, the flow line equation determined by the Seiberg-Witten equations
changes

ẋ = ´SW (x(t))⇝ ẋ = SW (x(t))

For the finite dimensional approximation V µ
λ , reversing orientation corresponds to

the space pair (N,L+) and (N,L´) constructing the Conley index, such that N is a
codimension 0 submanifold of V µ

λ , and

L+ Y L´ = BN, BL+ = BL´ = L+ X L´

Since there is an embedding X Ă V µ
λ ˆ R = Rn+1 such that

X » N/L+, Rd+1 ´ X » N/L´

by Alexander Duality, we obtain

H̃˚(N/L+) = H̃d´˚(N/L´) (7)

Here d = dim(V µ
λ ) = dim(N).

However, in G-equivariant SWFH, we need a conclusion similar to 7. Before that,
we introduce a weaker duality isomorphism theorem for stable homotopy versions, called
Spanier-Whitehead duality.

Without requiring equivariance first, consider a suspension spectrum, i.e., the formal
suspension of a topological space X:

Z = (X, k) = Σ´kX

and there is an embedding map X ãÑ SN , N " 0.
Definition 14. The Spanier-Whitehead dual of Σ´kX is

D(Σ´kX) := Σk(Σ´(N´1)(SN ´ X))

By definition, D(Sk) = S´k = (S0, k), and for two elements Z,W in the suspension
spectrum, D commutes with wedge product and smash product, i.e., D(Z _W) = D(Z _

D(W), D(Z ^ W ) = D(Z) ^ D(W). By Alexander duality, we get

H̃k(Z) = H̃´k(D(Z))

For the equivariant case, there is a similar equivariant Spanier-Whitehead duality.
Definition 15. Let G be a Lie group, X be a G-space, W be a representation of G. For
some representation V of G, there is an embedding map X ãÑ V +. Then the Spanier-
Whitehead dual on Σ´WX is

D(Σ´WX) := ΣW (Σ´VΣR(V + ´ X)).

For the two Conley index space pairs with opposite orientations of V µ
λ mentioned ear-

lier, they respectively generate the Seiberg-Witten Floer spectra of Y and ´Y , satisfying
the Pin(2)-equivariant duality D(SWF (Y )) = SWF (´Y ).

However, for the equivariant case, the SWFH of the dual spaces H̃G
˚ (Z) and H̃´˚

G (DZ)
may not be isomorphic. This is because the homology of the former has infinite non-trivial
graded groups only in the positive direction, while the latter has them only in the negative
direction.

For this reason, we need to introduce the concept of co-Borel homology (instead of
dual cohomology of Borel homology).
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6.3 Manolescu’s Construction Method 35

Definition 16. The co-Borel homology of an equivariant suspension spectrum is defined
as

cH̃G
˚ (Z) = H̃´˚

G (DZ)

where Z = Σ´VX.
Borel homology and co-Borel homology are linked by Tate homology.

Definition 17. The Tate homology of Z = Σ´VX is
tH̃G

˚ (Z) = cH̃G
˚ (ĄEG ^ Z)

where ĄEG is the unreduced suspension of EG.
An important property of Tate homology is

tH̃G
˚ (Z) = 0, if G acts freely on Z.

We will use this property later to simplify Tate homology, leaving only the homology on
the fixed points of the G action.

Additionally, Borel, co-Borel, and Tate homology satisfy the Tate-Swan exact se-
quence:

¨ ¨ ¨ Ñ H̃G
n´dimG(Z) Ñ cH̃G

n (Z) Ñ tH̃G
n (Z) Ñ H̃G

n´dimG´1(Z) Ñ ¨ ¨ ¨

When G = S1, Z = SWF (Y ), with Y being a homology sphere,

tH̃S1

˚ (Z) = tH̃S1

˚ (fixed point set of S1 action on Z) = tH̃S1

˚ (Sphere) = Z[U,U´1]

where degU = ´2.
Similarly, when G = Pin(2), we have

tH̃Pin(2)
˚ (SWF (Y );F) =tH̃Pin(2)

˚ (fixed point set of S1 action;F)
=tH̃Pin(2)

˚ (Sphere)
=F[q, v, v´1]/(q3)

Recalling the definition of co-Borel homology and
D(SWF (Y )) = SWF (´Y ), we have cH̃Pin(2)

˚ (SWF (Y );F) = H̃´˚
Pin(2)(SWF (´Y );F).

Putting this into the Tate-Swan exact sequence, we obtain

¨ ¨ ¨ Ñ H̃
Pin(2)
n´2 (SWF (Y );F) Ñ H̃´n

Pin(2)(SWF (´Y );F) Ñ

tH̃Pin(2)
n (SWF (Y );F) Ñ H̃

Pin(2)
n´3 (SWF (Y );F) Ñ ¨ ¨ ¨

Therefore, the element of degree n´2 in the first tower from the bottom in SWFH(Y )
corresponds to the element of degree ´n in the third tower from the top in the cohomology
of SWFH(´Y ), which further corresponds to the element of degree ´n in the third
tower from the bottom in SWFH(´Y ). Similarly, the second tower from the bottom
in SWFH(Y ) corresponds to the second tower from the bottom in SWFH(´Y ), with
the degree changing from n ´ 2 to ´n; the third tower from the bottom in SWFH(Y )
corresponds to the first tower from the bottom in SWFH(´Y ), with the degree changing
from n ´ 2 to ´n.

Thus we obtain
γ(´Y ) = ´α(Y )

β(´Y ) = ´β(Y )

α(´Y ) = ´γ(Y )
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7 Applications of 4-Dimensional Topology and Gauge
Theory

2-dimensional topological closed manifolds can be completely classified via triangulation
and computation of homology groups. 3-dimensional topological closed manifolds have a
unique smooth structure. In the 1980s, Thurston proposed the Geometrization Conjec-
ture, which was proven by Perelman in the early 21st century, also achieving geometric
classification.

However, the classification of 4-dimensional closed manifolds is much more difficult.
On one hand, many 4-dimensional topological manifolds do not admit smooth structures;
on the other hand, even within the smooth category, classification cannot be achieved.

Theorem 12 (Markov[Mar58]). There is no algorithm capable of distinguishing whether
two 4-dimensional closed manifolds are smoothly homeomorphic.

This is because the fundamental group π1(X) of a smooth 4-manifold X4 can realize
any finitely presented group G = xS|Ry, where S is the set of generators and R is the
set of relations. However, Adyan and Rubin proved in 1955 that there is no algorithm
to determine whether a finitely presented group is the trivial group, so classification of
finitely presented groups is impossible, and thus classification of smooth 4-manifolds is
impossible.

If we circumvent the classification obstacles caused by the complexity of the funda-
mental group, for example by considering simply connected manifolds, i.e., manifolds with
trivial fundamental group π1 = 0, we can obtain very rich conclusions.

For a closed simply connected oriented 4-manifold X, its H0 = Z, π1 = 0. By the
Hurewicz Theorem, we get H1 = 0. Then by the Universal Coefficient Theorem and
Poincaré duality, we know H4 = Z, H3 = 0, H2 = Zb, b ě 0.

Therefore, using the dual pairing of generators of H2, we can define a symmetric
bilinear “intersection form”

QX : Zb ˆ Zb Ñ Z
(ξ, η) ÞÑ xξ,D(η)y

where D : H2(X) Ñ H2(X) is the Poincaré duality isomorphism.
From the duality pairing property, the determinant of the matrix of QX is ˘1. That

is, QX is unimodular.
As early as the 1940s and 50s, mathematicians proved that intersection forms can

achieve the classification of 4-manifolds in the sense of homotopy.

Theorem 13. Let X be a closed simply connected oriented 4-manifold. Then the inter-
section form QX determines the homotopy type of X.

Next, we wish to know which unimodular symmetric quadratic forms can be realized
as the intersection form of some topological 4-manifold or smooth 4-manifold.

The theory of quadratic forms in linear algebra tells us that over R, QX is congruent to
mx1y ‘nx´1y. Let b+2 (X) = m, b´

2 (X) = n be the positive and negative indices of inertia.
Then the signature of the intersection form is σ(X) = b+2 (X) ´ b´

2 (X), and clearly the
Euler characteristic χ(X) = 2 + b2(X) = 2 + b+2 (X) + b´

2 (X).
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Over Z, symmetric unimodular bilinear forms can be divided into “definite” (positive
definite m = 0 or negative definite n = 0) and “indefinite” (m,n ą 0). They can also be
divided into even and odd types. If @x P Z, QX(x, x) is even, QX is called even; otherwise,
it is called odd.

Indefinite forms have a complete algebraic classification. Odd indefinite forms are
congruent to mx1y ‘ nx´1y, m,n ą 0. Even indefinite forms are of the form p

(
0 1
1 0

)
‘

qE8, p ą 0, q P Z.
Here the matrix of E8 can be written as

´2 1 0 0 0 0 0 0
1 ´2 1 0 0 0 0 0
0 1 ´2 1 0 0 0 0
0 0 1 ´2 1 0 0 0
0 0 0 1 ´2 1 0 1
0 0 0 0 1 ´2 1 0
0 0 0 0 0 1 ´2 0
0 0 0 0 1 0 0 ´2


However, definite unimodular bilinear forms have no direct classification. Exam-

ples like nx1y are diagonalizable, while E8, E8 ‘ E8, D
+
16, Leech lattice, etc., are non-

diagonalizable examples.
Another algebraic result is that if QX is even, then its signature must be divisible

by 8. The first non-trivial important theorem restricting intersection forms was given by
Rokhlin in 1952.

Theorem 14. If X is a closed spin smooth 4-manifold (e.g., a manifold that is simply
connected and QX is even), then the signature of X is divisible by 16.

From this theorem, we immediately get a corollary: since the signature of E8 is 8, E8

cannot be realized as the intersection form of a closed simply connected oriented smooth
4-manifold.

Since the theorem gives a necessary condition, we cannot use it to judge whether
E8 ‘ E8 can be realized as the intersection form of a smooth 4-manifold.

In fact, intersection forms can realize not only homotopy classification, as in Theorem
13; Freedman gave a series of stronger conclusions in 1982:

Theorem 15 (Freedman[Fre82]). • For any unimodular symmetric bilinear form Q,
there exists a simply connected closed topological 4-manifold X such that QX – Q;

• If Q is an even form, the corresponding manifold X is unique up to homeomorphism;

• If Q is an odd form, there are exactly two corresponding homeomorphism types, and
at most one is smoothable. (One has Kirby-Siebenmann invariant 1, one has 0;
KS invariant is 0 if and only if the topological manifold has an Rn vector bundle,
analogous to a “tangent bundle”).

This not only demonstrates that all unimodular symmetric quadratic forms can be
realized as intersection forms of some simply connected closed 4-manifold, but also gives
their classification.
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For example, there exists a 4-dimensional simply connected closed manifoldME8 whose
intersection form is E8. By Rokhlin’s theorem, it does not admit a smooth structure.

As another example, the intersection form of the smooth manifold CP2 is the odd type
x1y. Therefore, there exists a “fake” 2-dimensional complex projective plane, denoted
˚CP2, which admits no smooth structure and is not homeomorphic to CP2. By Theorem
13, it is homotopy equivalent to CP2.

Since the intersection form of a 4-dimensional homotopy sphere is trivial, which is an
even form, Freedman’s theorem directly implies the 4-dimensional Topological Poincaré
Conjecture: a 4-dimensional homotopy sphere is homeomorphic to the 4-dimensional
sphere.

Starting from the 1970s, mathematicians introduced tools from gauge theory into the
study of 4-dimensional topology. Donaldson in 1983 gave an application that shocked the
mathematical community, namely Donaldson’s Diagonalization Theorem:

Theorem 16 (Donaldson[Don83]). If the intersection form QX of a closed smooth simply
connected 4-manifold is definite, then QX – nx1y, n P Z.

Through this theorem, we can not only show that E8 cannot be realized as the inter-
section form of a smooth 4-manifold, but also that E8 ‘ E8 cannot. That is, ME8#ME8

admits no smooth structure.
Another important conclusion in 4D topology is the existence of exotic smooth struc-

tures on R4. One way to construct this is to take X = CP2#9CP2. Then QX =
x1y ‘ 9x´1y = (´E8) ‘ x´1y ‘ x1y. Take α as the generator of the last x1y. By Freed-
man’s theorem, there exists Σ – S2 representing α, and by Donaldson’s Diagonalization
Theorem, Σ – S2 is not smooth (otherwise (´E8) ‘ x1y would be diagonalizable, but it
represents a smooth manifold, contradiction). Take U as a neighborhood of Σ. Then U
can be embedded in CP2. Thus CP2zΣ – B4, which is homeomorphic but not diffeomor-
phic to R4.

Based on this idea, Gompf proved that there are infinitely many smooth structures
on R4 [Gom85], and Taubes proved there are uncountably many [Tau87].

8 The Poincaré Conjecture
Finally, we introduce the Poincaré Conjecture. This is another very important problem
driving the development of geometric topology. Its research path is similar to that of the
Triangulation Conjecture, proceeding by category and dimension. Interestingly, the 3-
dimensional triangulation problem was solved very early, while the 3-dimensional Poincaré
Conjecture was only solved in this century by Perelman; the smooth triangulation problem
was proven early, but the smooth Poincaré Conjecture remains unresolved. That is, the
problem of the existence of exotic spheres in different dimensions, especially the existence
of 4-dimensional exotic spheres, is a highly open problem.

In 1904, Poincaré proposed the conjecture:

Conjecture 4 (Poincaré Conjecture). Let M be a closed 3-dimensional manifold. If M
is simply connected, then M is homeomorphic to S3.

For a century, this conjecture remained unresolved. But people turned to studying
the analogue of the Poincaré Conjecture in other dimensions, namely the Generalized
Poincaré Conjecture. This is correct for n ě 4.
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Theorem 17 (Generalized Poincaré Conjecture). Let M be a closed n-dimensional man-
ifold. If M is homotopy equivalent to Sn, then M is homeomorphic to Sn.

Since a closed 3-dimensional manifold is simply connected if and only if it is homotopy
equivalent to S3 (we give a short proof at the end of this section), the Generalized Poincaré
Conjecture is the original Poincaré Conjecture when n = 3.

1. When n = 1, correct, because a closed curve is necessarily homeomorphic to S1;

2. When n = 2, correct, by the classification theorem of closed surfaces, a simply
connected closed surface must be S2;

3. When n = 3, correct. In 2003, Perelman used Ricci flow to prove Thurston’s
Geometrization Conjecture (i.e., any closed 3-manifold can be decomposed along
2-spheres into pieces, each assigned one of eight homogeneous geometric structures;
since a simply connected closed manifold cannot be decomposed, it can only have
spherical geometry, i.e., S3), thereby solving the Poincaré Conjecture;

4. When n = 4, correct. In 1982, Freedman developed the topological h-cobordism
theory for 4-manifolds, which, combined with conclusions on intersection forms of
4-manifolds, can provide a proof (smooth h-cobordism theory can only be used for
n ě 5);

5. When n ě 5, correct. In 1961, Smale used h-cobordism theory to give a proof,
although the case for n = 5 requires Freedman’s topological h-cobordism theory.

Conjecture 5 (Smooth Poincaré Conjecture). Let M be a closed n-dimensional manifold.
If M is homotopy equivalent to Sn, then M is diffeomorphic to Sn.

For a review of the Smooth Poincaré Conjecture, one can refer to Guozhen Wang’s
article [WX17].

In sufficiently high dimensions, all odd-dimensional spheres possess exotic smooth
structures. Specifically, the only odd-dimensional spheres with a unique smooth structure
are S1, S3, S5, S61.

More than half of the even dimensions have been proven to possess exotic spheres; it
is conjectured that they exist in the remaining even dimensions as well [BMQ23].

And there is a conjecture:

Conjecture 6. For spheres of dimension greater than 4, the only ones with a unique
smooth structure are S5, S6, S12, S56, S61.

Research on the theory of exotic spheres is currently progressing rapidly, and people
believe this conjecture is correct.

Regarding the existence of 4-dimensional exotic spheres, although it is a highly open
problem, people tend to believe that 4-dimensional exotic spheres do exist. Because we
have discovered that 4-dimensional space possesses “wild” properties: for example, R4 has
infinitely many smooth structures that are not mutually diffeomorphic.

Conjecture 7 (P.L. Poincaré Conjecture). Let M be a closed n-dimensional manifold.
If M is homotopy equivalent to Sn, then M is P.L. homeomorphic to Sn.
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The P.L. Poincaré Conjecture has been solved for all dimensions except 4. That is,
the P.L. Poincaré Conjecture is correct for n ‰ 4 [Buo0s]. Since smooth structures are
equivalent to P.L. structures for n ď 6, the 4-dimensional P.L. Poincaré Conjecture is
equivalent to the existence of 4-dimensional exotic spheres.

Proposition 1. Let M3 be a closed 3-dimensional manifold. Then M is simply connected
ðñ M is homotopy equivalent to S3.

Proof. ð: π1(M) = π1(S
3) = 0, so M is simply connected;

ñ: If M is simply connected, its connected orientable covering is the trivial covering,
meaning M is an orientable manifold, so H3(M) = Z . Also since H1(M) is the abelian-
ization of π1(M), π1(M) = 0 implies H1(M) = 0. By the Universal Coefficient Theorem,
H1(M) = 0. Then by Poincaré Duality, H2(M) – H1(M) = 0. By the Hurewicz The-
orem, π2(M) – H2(M) = 0, and consequently π3(M) – H3(M) – Z. This means a
generator of π3(M) can be determined by a map S3 Ñ M of degree 1, inducing an iso-
morphism between H3 and π3. Furthermore, there exists a map from S3 to M (regarded
as simply connected simplicial complexes) that induces isomorphisms on all homology
groups. By Whitehead’s Theorem, this map is a homotopy equivalence.

The idea for the necessity part of the proposition comes from [Hat04].
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