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In the end of this notes, I will introduce the Poincaré Conjecture as a supplement. To
see more detailed explanation, see this survey.


https://sunnylovelyday.github.io/files/survey_on_Poincare_Conjecture_en_version.pdf

2 1 Introduction

1 Introduction

The Triangulation Conjecture has been one of the most important problems in the field
of geometric topology since the last century, serving as a connecting thread for a major
line of research.

A space that can be triangulated (or simplicially triangulated) corresponds to a simpli-
cial complex. Simplicial complexes are powerful tools for studying topological problems.
They are topological spaces with a combinatorial structure, or can be viewed as finite
sets with a combinatorial structure between subsets, dictating which (n — 1)-dimensional
spaces are “faces” of which n-dimensional spaces. Intuitively, like a tetrahedron, it is a
figure where relationships between faces, edges, and vertices are prescribed. This helps
us directly define certain invariants.

Manifolds are another class of well-behaved topological spaces. They are locally home-
omorphic to Euclidean space, meaning they have good local structure. Manifolds are
ubiquitous, such as spheres, Mobius strips, projective spaces, etc. The property of being
locally Euclidean gives us the opportunity to perform calculus on more general spaces.
However, this local property yields almost no feedback on the global information of the
manifold. If a manifold has a smooth structure, we can perform global calculus. The
good news is that topological manifolds of dimension less than or equal to three possess
a unique smooth structure. Therefore, purely topological problems like the 3-dimensional
Poincaré Conjecture can be solved using tools from analysis and equations; Perelman
solved the 3-dimensional Poincaré Conjecture using Ricci flow, a tool from partial differ-
ential equations.

Triangulating a manifold is a powerful method for studying its global properties. For
instance, the Euler characteristic was initially derived from polyhedra, later generalized to
higher-dimensional polyhedra, and then to triangulable manifolds. We can prove that for
a given manifold, its Euler characteristic is independent of the method of triangulation;
that is, it is a topological invariant. In this context, we are more concerned with whether a
triangulation of a manifold exists: once it exists, we can calculate well-defined topological
quantities using the triangulation structure. Compared to purely topological methods,
such calculations are often simpler.

Furthermore, with a triangulation on a topological space, it is easy to calculate its
simplicial homology. One widely applied homology theory is singular homology, which
applies to all topological spaces, but specific calculations are often complex. Simplicial
homology can only be used for topological spaces where a triangulation exists. Mathe-
maticians are also concerned with whether triangulations are essentially unique (i.e., in
the sense of having a common subdivision). Some special topological spaces have triangu-
lations that are not essentially unique, or may not even possess a triangulation. Despite
these defects, simplicial homology still holds an important place in topology. Because its
definition is more intuitive and calculation more direct, it facilitates deriving conclusions
on spaces with nice properties.

After the existence and uniqueness of triangulations on general topological spaces
were disproven, mathematicians became concerned with the existence and uniqueness of
triangulations on manifolds, which have better regularity. The ideal situation is that a
topological space is simultaneously a manifold and a simplicial complex (i.e., the manifold
can be triangulated), so that it possesses both good local properties and global properties.

Thus, mathematicians conjectured:



Conjecture 1 (Triangulation Conjecture). A topological manifold is homeomorphic to a
simplicial complex.

This problem was first proposed by Kneser in 1926, and it was not until 2013 that
Manolescu formally resolved this problem [Man15].

Historically, the resolution of this problem proceeded by dimension; in fact, the re-
search methods for n = 2, 3,4, > 5 are all different.

The cases for n < 3 were solved earliest, and encouragingly, the Triangulation Con-
jecture is correct in these cases.

When the case for n > 4 was highly open, mathematicians settled for the next best
thing. Instead of limiting themselves to the most general topological manifolds (the
topological category), they studied the behavior of the Triangulation Conjecture in the
P.L. (Piecewise Linear) category and the smooth category, which have better regularity.

The Triangulation Conjecture is correct in all dimensions within the smooth category.
Manifolds in the P.L. category possess combinatorial triangulations, which are stronger
than simplicial triangulations, so the conjecture is also correct there. In the topological
category, when n > 4, there are examples where P.L. structures do not exist. The Kirby-
Siebenmann class, a tool for studying the existence of P.L. structures, can be composed
with the Bockstein homomorphism to study simplicial triangulations.

When mathematicians constructed 4-dimensional non-triangulable manifolds, thereby
disproving the 4-dimensional Triangulation Conjecture, they dared not assert the cor-
rectness of the conclusion for > 5 due to the exotic behavior of dimension 4 (e.g., R
has a unique smooth structure for n # 4, while for n = 4 there are uncountably many
smooth structures). The Triangulation Conjecture for n > 5 remained unresolved for
a long time following the progress of Galewski & Stern in the 1980s, until Manolescu
constructed Pin(2)-equivariant Seiberg-Witten Floer homology in the 21st century. This
revealed more symmetry and disproved the conjecture for n > 5.

2 Triangulation and Combinatorial Triangulation

First, we give the definition of manifolds in different categories and the definition of
simplicial complexes, and then describe the concepts of triangulation and combinatorial
triangulation of manifolds.

Definition 1. Let M™ be a Hausdorff space with a countable topological basis. If for all
x € X, there exists a neighborhood U of x and a homeomorphism ¢ : U — R™, then M is
called an n-dimensional topological manifold, and (U, ¢) is a coordinate chart at point x.

Definition 2. If M™ is a topological manifold, a collection of coordinate charts {U;, d;}ier
such that | J,U; = M s called an atlas of M. The continuous maps ¢; o gbj_l R - R”
are called transition maps. If all transition maps are smooth, then M is called a smooth
manifold, and its mazximal atlas is called a smooth structure on M (referring here to the
equivalence class under smooth homeomorphism,).

Definition 3. If M™ is a topological manifold and the transition maps are P.L. (Piecewise
Linear) maps, then M is called a P.L. manifold (Piecewise Linear manifold), and its
maximal atlas is called a P.L. structure on M.



4 2 Triangulation and Combinatorial Triangulation

Definition 4. (V,S) is called an abstract simplicial complex if V is a set of vertices and
S < P(V), such that if o € S and 7 < o, then T € S. For all 0 € S with |o| = d, if
we replace o with a d-dimensional simplex A?, this is called the geometric realization of
(V,S), denoted as K, and referred to as a simplicial complex. |K| = |_| A4 is called the

AdeK
underlying space of K.

Hereafter, we do not distinguish between the abstract simplicial complex and its cor-
responding simplicial complex, denoting it as K = (V,S).
The star of a simplex 7 € S is

st(t) ={o € S|t c o}
The closure of S" < S is
Ci(SY={reS|lrcoel}
The link of a simplex 7€ S is
lk(1) = {0 € Cl(st(r))|T no =}

A triangulation that only requires the topological manifold to be homeomorphic to a
simplicial complex is called a simplicial triangulation:

Definition 5 (Simplicial Triangulation / Triangulation). An n-dimensional topological
manifold M is triangulable if and only if there exists a homeomorphism ¢ : M™ — |K],
where K is a simplicial complez.

To better study the triangulation of manifolds, we need to introduce the concept of
combinatorial triangulation. In this paper, if “triangulation” is used without the adjective
“combinatorial,” it refers to simplicial triangulation.

If we require more “combinatorial structure” on the simplicial complex, i.e., requiring
it to also be “locally Euclidean,” we have combinatorial triangulation:

Definition 6 (Combinatorial Triangulation). An n-dimensional topological manifold M
is combinatorially triangulable if and only if there exists a homeomorphism ¢ : M"™ — |K|,
where K is a simplicial complex, and for all A € K, lk(A) is P.L. homeomorphic to the
standard sphere.

In fact, a manifold has a combinatorial triangulation if and only if it is a P.L. manifold.

Combinatorial triangulation is a stronger type of triangulation than simplicial trian-
gulation, but its regularity is weaker than differential conditions, while its properties are
closer to simplicial triangulation. One can study simplicial triangulation on the basis of
combinatorial triangulation.

An example of a space with a simplicial triangulation but no combinatorial triangula-
tion is the double suspension of the Poincaré homology sphere P2, ¥?P. By the Double
Suspension Theorem, X2P =~ S5 so there exists a triangulation on Y?P; however, the
link at its cone points is P, which is not P.L. homeomorphic to S* (it is not even a
manifold), so it has no P.L. structure, i.e., it is not combinatorially triangulable.

4



In fact, there is an obstruction to the existence of a combinatorial triangulation on a
topological manifold M—the Kirby-Siebenmann class A(M). By composing the Bock-
stein homomorphism ¢ once in the cohomology sequence, we obtain the obstruction to
the existence of a simplicial triangulation, §(A(M)).

Regarding the uniqueness of triangulation, there was an important conjecture: the
Hauptvermutung (Main Conjecture of Combinatorial Topology), see [ARC96] for details.

Conjecture 2 (Hauptvermutung for Polyhedra (Topological Spaces)). Any two triangu-
lations of a triangulable topological space have combinatorially equivalent subdivisions.

Or equivalently characterized as: If two simplicial complexes are homeomorphic, then
they are P.L. homeomorphic, and the homeomorphism is homotopic to the P.L. homeo-
morphism between them.

The Hauptvermutung for polyhedra was disproven by Milnor in 1961. Consequently,
we are curious whether triangulations are unique on spaces with stronger regularity, such
as manifolds:

Conjecture 3 (Hauptvermutung for Manifolds). If two P.L. manifolds M™ and N™ are
homeomorphic, then they are P.L. homeomorphic, and the homeomorphism is homotopic
to the P.L. homeomorphism between them.

The Hauptvermutung for manifolds was eventually disproven as well.

If two triangulations of a triangulable manifold have combinatorially equivalent sub-
divisions, then these two triangulations are said to be essentially unique.

We will introduce later that for smooth manifolds, all their triangulations are essen-
tially unique.

An example of a manifold with two distinct triangulation (simplicial triangulation)
structures is the double suspension of the Poincaré homology sphere P3. As mentioned
above, ¥?P = S%, and S° has a standard P.L. structure obtained from the standard P.L.
structure of S3 by double suspension. However, since S 2 P3, the P.L. structure on P3,
after double suspension, yields a triangulation structure on S® (as mentioned before, this
cannot be a P.L. structure) via the Double Suspension Theorem. This triangulation is
not combinatorially equivalent to the standard P.L. structure of S°, otherwise it would
contradict S® 2 P3. Thus, S° has two inequivalent triangulation structures: one induced
by the double suspension of S®, and one induced by the double suspension of P3. This
does not contradict the correctness of the P.L. Poincaré Conjecture for n = 5, which states
that there is only a unique P.L. structure on S°.

3 History of the Development of the Triangulation
Conjecture

We now consider the problem of the Triangulation Conjecture to be completely solved by
Manolescu in 2013 [Man15]. Let us first give the answers to the Triangulation Conjecture
in various categories and dimensions [Man24]:

3.1 Do all smooth manifolds have triangulations?

The regularity of smooth manifolds is sufficient, so the answer here is affirmative.
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Cairns in 1935 [Cai35] and Whitehead in 1940 [Whi40] proved that: Any smooth
manifold has an essentially unique P.L. structure, and therefore it is triangulable.

3.2 Do all topological manifolds have triangulations?
e For n=0,1, Correct, it is trivial;

e For n = 2, Correct, Radé proved in 1925 that any 2-dimensional surface has a P.L.
structure, and thus has a triangulation;

e For n = 3, Correct, Moise proved in 1952 that any 3-dimensional manifold has a
smooth structure, and thus has a triangulation;

o For n =4, Incorrect, in 1990, Casson applied Casson invariants to the Eg manifold
constructed by Freedman, demonstrating that it cannot be triangulated;

o For n =5, Galewski & Stern in 1980 and Matumoto in 1978 reduced the existence
of triangulation to the split exactness problem of an exact sequence. This problem
was finally disproven by Manolescu in 2013 using Pin(2)-equivariant Seiberg-Witten
Floer homology.

3.3 Are all topological manifolds P.L. manifolds (is there a com-
binatorial triangulation)?

o For n < 3, Correct, reason as above;

e For n = 4, Incorrect, the 4-dimensional Eg manifold constructed by Freedman in
1982 has no piecewise linear structure;

e Forn = 5, Incorrect, Kirby-Siebenmann constructed an obstruction to the existence
of P.L. structures on a topological manifold M, namely the Kirby-Siebenmann class
A(M) e HY(M;Z/2). For n =5, let M™ = Eg x T"*, then A(M) # 0, s0 M is a

manifold with no combinatorial triangulation.

For the categories to which manifolds belong, we have the following inclusion relations
(Figure [ll): Regularity increases from topological manifolds, to simplicially triangulable
manifolds, to P.L. manifolds (combinatorially triangulable manifolds), to smooth man-
ifolds. When n < 3, all categories are equivalent, i.e., there exists a unique smooth
structure and P.L. structure on a topological manifold, and these structures determine
each other. When n < 6, the P.L. structure of a manifold determines a unique smooth
structure, whereas for n = 7, a smooth structure exists on a P.L. manifold, but it may
not be unique [Milll].

4 Kirby-Siebenmann’s Work on Combinatorial Tri-
angulation

4.1 Homology Cobordism Group Oj

Two oriented n-dimensional manifolds M7*, M} are called oriented cobordant, denoted as
M} ~ My, if there exists an (n + 1)-dimensional oriented manifold with boundary W™+
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4.1 Homology Cobordism Group O3 7

P.L.

(Combinatorial Triangulated)

Trangulated
dim =5

Figure 1: Relationships of Manifold Classifications

such that W™ =~ My 1 (—M™). In this case, the manifold W™ is called a cobordism
between M7 and MJ". When M3 is the empty manifold, M7 is said to be null-cobordant.

The oriented cobordism relation ~ defined above is indeed an equivalence relation.
Reflexivity follows from the trivial cobordism W" = M" x I, symmetry follows from
reversing the orientation of W"!, and transitivity follows from gluing along common
boundaries.

Definition 7. Let [M™] denote the oriented cobordism equivalence class of M™. The set
of equivalence classes is denoted by §2,. Define an addition operation in S, :

(M + [My] = [M v MyT],

then €, becomes an Abelian group. Its zero element is the equivalence class of null-
cobordant manifolds. 2, is called the oriented cobordism group of n-dimensional manifolds.

It can be verified that for two trivial cobordisms M x I, M3 x I, by performing
boundary connected sum along M; x 0 and M, x 0, we obtain an (n + 1)-dimensional
oriented manifold W, where 0W = (M#Ms) 1 —(M; 1 My). Thus [Mi#M,] = [M]] +
[M3'], so we can also use connected sum to define addition in €2,,.

Through Thom’s cobordism theory or 3-dimensional topological surgery, it can be
proven that Q23 = 0, meaning all oriented 3-dimensional compact manifolds are boundaries
of some oriented compact 4-dimensional manifold.

Definition 8. The homology cobordism group ©3 is the set of equivalence classes of integer
homology spheres under the cobordism relation. That is, VY € O3, H,(Y;Z) = H,(S*;Z),
and Y1 ~ Yy € O3 = IX10X = -V, U Yy, Ho(X;Z) = H,(S? x [0,1);Z). [S?] is
regarded as the identity element of the group, ¥ — —Y is the inverse mapping, and
(Y1,Ys) — Y1#Y5 is addition, thus forming an Abelian group.

Unlike the simple conclusion that Q3 = 0, ©3 has the requirement of “homology
cobordism” added to its definition, making its structure much more complex. Since €3 =
0, any two 3-dimensional homology spheres are cobordant. However, only when this

7



8 4 Kirby-Siebenmann’s Work on Combinatorial Triangulation

cobordism is a “homology cobordism” (analogous to the “trivial cobordism” S? x I) are
two homology spheres considered to belong to the same equivalence class in the homology
cobordism group.

To study its structure, we can use homomorphisms from it to other Abelian groups,
such as the Rokhlin homomorphism:

w
Definition 9. The Rokhlin homomorphism i : ©3 — Z/2, u(Y) = % mod 2, where

W is a smooth compact spin 4-manifold with OW =Y, and o(W) is the signature of the
intersection form of W.

For example, we have u(S®) = 0, u(P) = 1, where P is the Poincaré homology sphere.
It can be viewed as the boundary of a 4-manifold obtained by FEgs-plumbing (called the
Es manifold). Its intersection form matrix is

-2 1 0 0 0 0 0 O
1 -21 0 0 0O 0 O
o 1 -2 1 0 0 0 O
o o0 1 -2 1 0 0 0
o o o0 1 -2 1 0 1
o o0 o0 o0 1 -2 1 0
o o o0 o o0 1 -2 0
o o0 o0 o 1 0 0 =2

This matrix is a negative definite matrix of order 8 (in some of Manolescu’s papers, the
FEs matrix is taken as positive definite, with no essential difference), so o(Fs) = 8, and
p(P) =1

Using Rokhlin’s theorem, we can prove that p is indeed a homomorphism:

Theorem 1 (Rokhlin). For a smooth closed spin 4-manifold X, o(X) is divisible by 16.

If Y3 serves as the boundary for 4-dimensional smooth spin manifolds Wy, Ws, let
X = Wy uy Wy, Then X is a closed 4-dimensional spin manifold. In the homology
sequence induced by the commutative diagram of inclusion maps

Wi
Y X
Wa
we have H?(X) = H*(W,)® H?(W,). Therefore, the signature of the intersection form of
X equals the sum of the signatures of the intersection forms of W; and W5. By Rokhlin’s
theorem, o(W;) + o(W3) = o(X) = 0 mod 16, so o(W;)/8 = o(W3)/8 mod 2. This
means the value of 1(Y") is independent of the choice of W. Similarly, it can be proven that
the value of p is independent of the choice of representative in the equivalence class of the
homology cobordism group. Thus, u is a well-defined map on ©3. Furthermore, if compact

spin manifolds with boundary satisfy 0W; = Y1, 0W, = Y3, then Y1 #Y, = (Wi #Ws), so
u(Y1#Ys) = pu(Y1) + u(Y2), which proves that p is a homomorphism.

8



4.2  Kirby-Siebenmann class 9

Also, since p is a surjective homomorphism, this shows that ©3 is not a trivial group.

Due to the existence of the Rokhlin homomorphism, we know |©3] > 2. For a time,
mathematicians hoped that p was an isomorphism from O3 to Z/2. However, when
Donaldson introduced gauge theory tools to study 4-manifolds, Furuta used them to
prove that O3 is not finitely generated, i.e., it has a Z subgroup. Later, it was discovered
that it even has a Z subgroup as a direct summand, and even a Z* as a direct summand,
and furthermore O /Z* also has a Z® as a direct summand.

4.2 Kirby-Siebenmann class

A principal G-bundle is a fiber bundle with fiber being a topological group G, and G
acting freely on the fibers.

For a given group G, one can construct a principal G-bundle EG — BG such that any
principal G-bundle P — B with a paracompact base space B can be pulled back from
EG — BG. That is, there exists a bundle map f : B — BG inducing an isomorphism
on fibers, and P = f*(EG). Additionally, the total space EG is contractible. A principal
G-bundle satisfying these conditions is called a universal G-bundle.

The classifying space of principal G-bundles is the base space BG of the universal
bundle EG — BG. The meaning of classification is that for any topological space X, the
homotopy equivalence classes of principal G-bundles on it correspond one-to-one with the
homotopy classes of continuous maps from X to BG.

For example, the infinite-dimensional Grassmannian manifold can serve as the clas-
sifying space for principal Og-bundles (since k-dimensional real vector bundles can be
reduced to Oy bundles, the Grassmannian can also serve as the classifying space for all
k-dimensional real vector bundles).

The Grassmannian manifold Gr(k,n) is the quotient space of the orthonormalized
Stiefel manifold V°(k,n), i.e., the set of all orthonormal frames in R™, where two or-
thonormal frames are equivalent if they span the same k-dimensional subspace in R".
Gr(k,n) is the set parameterizing all k-dimensional subspaces in R™. By definition,
VO(k,n) — Gr(k,n) is a principal O(k) bundle. The canonical embedding of Euclidean
space from low dimension to high dimension induces embeddings Gr(k,n), V% (k,n) as
n — . Let Gr(k,00) = nlgrolo Gr(k,n). The resulting infinite-dimensional manifold

Gr(k,0) is the classifying space for O(k), i.e.,
EO(k) = VO(k,0) — BO(k) = Gr(k,x)

is the universal bundle for principal O(k) bundles.

If we select a representative element of the fiber on V0(k, o0) for each point on Gr(k, )
and replace this fiber with the k-dimensional subspace spanned by the orthonormal frame
of the representative element, we obtain the canonical vector bundle v*. v* — Gr(k, )
is the universal bundle for k-dimensional vector bundles.

Similarly, we define TOP(n), PL(n), Diff(n) as the groups of all origin-preserving self-
homeomorphisms, self-P.L.. homeomorphisms, and self-diffeomorphisms on R", respec-
tively. Obviously, there are inclusion maps TOP(n) — TOP(n + 1), and similarly for the
other two sequences of groups. Letting n — o0, we obtain three groups TOP, PL, Diff, with
inclusion maps Diff — PLL — TOP. Let their classifying spaces be BTOP, BPL, BDiff.
Then there are inclusion maps BDiff - BPL — BTOP.

9



10 4 Kirby-Siebenmann’s Work on Combinatorial Triangulation

Generally, if H < G is a subgroup, then EG is a contractible space under free H
action, and EG — EG/H is a principal H bundle. Thus FG/H can be viewed as the
classifying space BH. Therefore, the natural map ¢ : EG/H — EG/G is actually a
model for BH — BG, and the fiber of 1 equals G/H.

Therefore, we can identify the fibers of BDiff — BPL and BPL — BTOP with
PL/Diff and TOP/PL, respectively.

Thus, for any topological manifold X, there exists a canonical map f : X — BTOP.
The existence of a PL structure on X is equivalent to the problem of lifting f to a map
F : X — BPL. Furthermore, the existence of G : X — BDiff determines whether X has
a smooth structure.

The above lifting problems can be studied through obstruction theory, specifically
obstruction classes in cohomology rings. The homotopy types of the fibers of BDiff —
BPL and BPL — BTOP play an important role in the research.

For an n-dimensional smooth manifold X, there exists a canonical map f : X —
BGL,(R). Whether a lift F': X — BGL (R) exists determines if X is orientable. Since
GL}(R) = GL,(R) is one of the two connected components, and GL,(R)/GL (R) = Z/2,
the fiber of BGL (R) — BGL,(R) is a K(Z/2,0) space. By standard obstruction theory,
the obstruction class determining the existence of orientation lies in H'(X;Z/2). It can
be proven that this is exactly the Stiefel-Whitney class wy (X).

Another example is the double covering Spin(n) — SO(n), which induces a fiber
bundle BSpin(n) — BSO(n) with fiber B(Z/2), which is a K(Z/2,1) space (can be taken
as RP*). The existence of a spin structure on X depends on whether the canonical map
f X — BSO(n) (fixing a Riemannian metric and orientation on X) can be lifted to
BSpin(n). By obstruction theory, the obstruction to the existence of a spin structure lies
in H?(X;Z/2). Tt can be proven that this is exactly the Stiefel-Whitney class wy(X).

As mentioned earlier, for a general topological manifold M, the problem of the exis-
tence of a P.L. structure is the map lifting problem shown in the diagram:

BPL

//>'
L

M L BToPp

A(M) is defined as the obstruction to lifting f : M — BTOP to BPL. It has the
following property:

Theorem 2. If M™ is a topological manifold and n = 5, then M has a P.L. structure if
and only if A(M) =0¢€ HYM;Z/2). Furthermore, if A(M) = 0, the inequivalent P.L.
structures on M can be parameterized by H>(M;Z/2).

Similar to the previous examples of orientation and spin, here we discuss the homotopy
type of the fiber TOP/PL of BPL — BTOP. In [KS77], it was proven that TOP/PL is
a K(Z/2,3) space, so the obstruction class lies in H*(M;Z/2).

Generally, it is difficult to express the specific form of A(M). For special cases: If the
topological manifold M has a triangulation, we can give an expression for A(M).

For simplicity, let us first consider the orientable case: Let an oriented topological
manifold M™ have a fixed triangulation K (not necessarily a combinatorial triangulation).
Let

o(K)= Y [lk(0)] € Hy_a(M,03) = H*(M,©3)

oceKn—4
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By Poincaré duality, this can be viewed as ¢(K) € H*(M; ©3).
Using the surjective homomorphism p, we can construct a short exact sequence:

0 — ker(p) > 055 7Z/2 -0

This induces a long exact sequence with variable coefficients:

-~ HY(M;05) & HY(M;Z/2) > H*(Mskerp) — -+
o(K) — A(M)

That is, A(M) = p(c(K)).

When K is a combinatorial triangulation, ¢(K) = 0. On the other hand, p(c(K)) =0
implies that there exists some combinatorial triangulation on M (possibly different from
K). This shows that p(c(K)) is indeed the obstruction to the existence of a P.L. structure,
e, A(M) = p(c(K)).

For the case where M is non-orientable, we can use Poincaré duality with local coef-
ficients to similarly obtain ¢(K) € H*(M;©3).

However, this construction depends on the choice of triangulation K, so it is not
suitable for directly studying the problem of simplicial triangulation. But in the work of
Galewski & Stern, a “Universal 5-manifold” is constructed, where this comes into play
using proof by contradiction.

5 Galewski & Stern’s Work for n > 5

5.1 Steenrod Squares

For the short exact sequence
0—-7/23%7/457/2 -0
where r is the mod 2 homomorphism, it induces a long exact sequence
L H(M;Z)2) 25 HY(M;Z/4) 5> HI(M;Z/2) 5 HYY (M;Z/2) 2>

where M is a fixed topological manifold. The Bockstein homomorphism 3 here is the first
Steenrod square Sq', i.e., Sq' = 8 : H*(M;Z/2) — H*'(M;Z/2).

5.2 Equivalence Conditions for Triangulation when n > 5

Galewski & Stern [GS80] and Matumoto [Mat76] gave a cohomology obstruction to the
existence of triangulation (simplicial triangulation), and this obstruction is precisely the
Bockstein homomorphism 6 : H*(M;Z/2) — H°(X,ker(u)) composed with the Kirby-
Siebenmann class A(M), i.e., 6(A(M)).

Similar to the introduction of A, the obstruction to triangulation is also obtained by
studying classifying spaces and their fibrations. Galewski & Stern constructed a classifying
space BTRI. Whether a topological manifold X can be triangulated depends on whether
X — BTOP can be lifted to X — BTRI. Skipping the details of the proof, we ultimately
have the theorem:

11



12 5 Galewski & Stern’s Work for n > 5

Theorem 3. There exists a triangulation on a topological manifold M of dimensionn =5
if and only if S(A(M)) € H?(M;ker(p)) is 0. If 6(A(M)) = 0, distinct triangulations on
M can be parameterized by H*(M:;ker(u)).

Using this theorem, we can deduce:
Theorem 4. If the exact sequence
0 — ker(u) - 03 5 7Z/2 - 0 (1)
is split exact, then triangulations exist on all manifolds of dimension n = 5.

Proof. 1f the short exact sequence (El) is split exact, then ¢ : Z/2 — O3 s.t. pop =id.
Thus 6 = (o) = (dop)op = 0. Therefore §(A(M)) =0, VM™, n > 5. Hence, by
Theorem B, triangulations exist on all manifolds of dimension n > 5. ]

In fact, the converse of Theorem @ also holds.

Galewski & Stern constructed a “universal 5-manifold” N in their 1979 paper [GSTY],
satisfying Sq' (A(N)) # 0. The original construction will be detailed in p.3.

Using this condition, we can prove the converse of Theorem W

Theorem 5. If the “universal 5-manifold” N° can be triangulated, then the exact sequence
) is split exact.

To prove this theorem, we supply a conclusion from homology theory:

Lemma 1. The short exact sequence (B) is split exact <= there exists a 3-dimensional
integer homology sphere Y such that p(Y) = 1 and 2[Y] = 0 € O3 (i.e., Y#Y s the
boundary of an integer homology disk W*).

Proof. =: If the short exact sequence (EI) splits, then dp : Z/2 — O3 s.t. po e =id.
Let [Y] = (1), then pu(Y) = u(p(1)) =1, and 2[Y] = 2¢(1) = ¢(2) = 0.

«—=: Let p:7Z/2 — O3, p(1) = [Y], ¢(0) =0. Since 2[Y] =0, ¢ is a homomorphism,
and p o ¢ = id. Thus ([ll) splits. O

Proof of Theorem B The proof uses contradiction. Assume the short exact sequence EI
does not split. Then by [Il, Y[Y] € © satisfying u(Y) = 1, we have 2[Y] # 0, i.e., O3
contains no element of order 2.

Let © be the group generated by all 3-dimensional links in a given triangulation of N.
It is a subgroup of the 3-dimensional homology cobordism group O3. Let ¢ : © < O3 be
the inclusion map.

Since the triangulation on N contains finitely many 3-dimensional links, © can be
written as a direct sum of finitely many cyclic groups, © = (hy)@® - - - ® {(hs), where each
term is either a free cyclic group or a finite cyclic group of prime power order.

We define a map v : © — Z/4. We only need to define it on {h;}¥_: 1" If p(h;) =0,
let v(h;) = 0; 2" If pu(h;) = 1 and (h;) = Z, let v(h;) = (h;) mod 4; 3" If u(h;) =1
and the order of h; is p™, since p is a homomorphism and the order of pu(h;) € Z/2 is 2,
then p = 2. Also, since © < O3 contains no element of order 2, m > 2. We can also let
~v(h;) = <{h;y mod 4. By definition, ppoi =1ro~.

12



5.3 Construction of the Universal 5-manifold 13

The obstruction determining whether a P.L. structure exists on N is denoted by ¢(N) €
H*(N;©3), and by definition, there exists ¢/(N) € H*(N;©0) such that i(c/(N)) = ¢(N).
Thus

Sa' (u(e(N))) = Sa’ (u(i(c () = Sa’ (r(4(¢'(N)))) = 0

since Sq' or = 0. Also since u(c(N)) = A(N), we obtain Sq' (A(N)) = 0, contradicting
Sq' (A(N)) # 0. O

The contrapositive of Theorem H states that if the exact sequence (m) does not split,
then N° cannot be triangulated. If we let M™ = N x T"5 we also have Sq' (A(M)) # 0.
Similar to the previous conclusion, we have:

Theorem 6. If the exact sequence (B) is not split exact, then in every dimension n = 5,
there exists a manifold that cannot be triangulated.

The contrapositive of this theorem is the converse of Theorem @
Thus we have the following conclusions:

All manifolds for n > 5 are triangulable <= FExact sequence m splits (2)
«—3J[Y] € O3t 2[Y]=0, u(Y)=1 (3)
<= Triangulation exists on N° (4)

5.3 Construction of the Universal 5-manifold

The following construction process is essentially a translation of Galewski & Stern’s
1979 article published in “Geometric Topology” [GS79]: *A UNIVERSAL 5-MANIFOLD
WITH RESPECT TO SIMPLICIAL TRIANGULATIONS*. The original text had nu-
merous typos, and in this article, I have corrected the errors I could identify.

Let’s briefly review the conclusion obtained using the “universal 5-manifold”: if we
construct a closed 5-dimensional topological manifold N such that Sq'(A(N)) # 0,
then a triangulation exists on it if and only if triangulations exist for all manifolds with
n = 5. This is why it is called a “universal 5-manifold”. Since the number of vertices
in a triangulation is finite, compactness is a necessary condition for the existence of a
triangulation on a manifold, so we need to make a closed manifold here.

Lemma 2. An n-dimensional cell complezx (i.e., simplicial complex where the link of
every vertex is an (n — 1)-dimensional homology sphere) K with n = 5, K # &, is an
n-dimensional topological manifold |K| if and only if the links at the vertices of |K| are
all simply connected.

This is a corollary of Cannon & Edwards’ double suspension theorem. (I haven’t yet
researched how double suspension implies this lemma; the double suspension theorem
says that the double suspension of a 3-dimensional homology sphere is homeomorphic to
the 5-sphere.)

Next, we geometrically construct a closed 5-dimensional topological manifold N sat-
isfying Sq¢*(A(N)) # 0. T will use numerous illustrations to assist the discussion. Objects
constructed in different steps will be indicated in different , and the dimension of
geometric bodies will be marked with superscript ™ where possible.

13
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5 Galewski & Stern’s Work for n > 5

sphere. It is the boundary of an oriented parallelizable 4-
dimensional P.L. manifold W with (W) = 8. Let X =

Take H? to be any oriented 3-dimensional P.L. homology 4‘9{'
Z
H?

W uy CH, where C'H is the topological cone on H, and

let © be the cone point of CH.

X=Wo,CH

Next, we paste a P.L. 1-handle D? x [0,1] onto (CH x 0 U CH x 1) = X x [0, 1].

Figure 2: Note the choice of orientation for the two H’s, and the connection method of

D3

Let S = CH x 0 Upscys D3 x I Upscps
CH x 1. The way we paste the handle must
ensure 0S = H#H (note it is not H# — H;
our connected sum here is the connected sum
of two homology spheres with the same orien-
tation).

It can be seen that 0S5 is also a homology
sphere, and precisely H#H, and S' it itself is
a homology disk ~ D*. To avoid confusion,
we use \mathbb{S} to represent the standard
sphere/ball, i.e., S.

The reason we emphasize that the con-

S
\ ®
Jeny) H C// H
S~ CHx Uy, G G220

U perpCHX| I Sal m(;w‘

Figure 3: Here, for convenience of draw-
ing, the orientation issue is not highlighted

nected sum is not H# — H is that the latter preserves orientation compatibility across
the boundary of the connected sum, while the former reverses orientation when crossing
the boundary. Utilizing this property, and the fact that they are connected to opposite
sides of X x [0, 1], we create a non-orientable geometric body X x [0,1] u S. That is, its
first Stiefel-Whitney class w; (X x [0,1] U S) =1€ H(X x[0,1] U S;Z/2Z). Subsequent

embellishments from the construction will maintain w; non-zero.

14



5.3 Construction of the Universal 5-manifold 15

Next, construct a topological cone "= S Uy C(H#H) on the boundary of S.

(A 3
\‘:’\H\‘ =l

QY H

Ej Upay C(HH)

~ D'

same H*

P’ an)“ c(s )) ZSQ

lf

S

Since S is a homology disk, forming a topological cone on its boundary yields T" as a
4-dimensional homology sphere. In fact, T is a 4-dimensional homotopy sphere.

Let Y = X x I U (S upeg C(H#H)), and let z be the cone point of C(H#H).
(Here Y is not a manifold; it is the union of a 5-dimensional manifold along its boundary
with a 4-dimensional manifold, so Y is merely a simplicial complex, or polyhedron.) The
polyhedron Y contains the sub-polyhedron T'= S upyuy C(H#H).

Y= Xx [o.1] U(S " Uy C(HH ))4
= qu[O. IJU

Figure 4: Note that Y is formed by union of parts with different dimensions, so it cannot
be a manifold

Let P =Y uprCT, and let y be the cone point of C'T". This yields P as a 5-dimensional
simplicial complex.

15



16 5 Galewski & Stern’s Work for n > 5

Here two cones are drawn simultaneously, which is dazzling on paper. We try to
regain geometric intuition using the property that 7' is a homotopy sphere; the cone on
it is simply a homotopy disk of one higher dimension.

Figure 5: Wrapping a 3-dimensional homology circle H# H with a 4-dimensional spherical
membrane

Thus, forming a topological cone on the homotopy sphere T" intuitively corresponds
to filling the interior of the sphere.

~ x*x[0,1JUD"

And 0P is P.L. homeomorphic to W#,W u C(H#H), where g denotes the connected
sum along the boundary. (There is a typo in the original text, I temporarily use g as a
substitute) Because of the following calculation:

OP = X"y {1y &
:((WQUH CH)X{J' lb)A (S"UH,,H C(H#H))
= (W4 w)u C(HiH)

G denote "boumlar\lj comected sum” thus [ # H < W/

16



5.3 Construction of the Universal 5-manifold 17

Here T use the symmetric difference symbol A loosely for brevity. Strictly speaking,
it should be the “union of the two” minus the “interior of the intersection of the two”.
Intuitively, 0P looks like this:

H#H

(oP)=(w 4 w)u (HaH

Since W is a parallelizable manifold, all characteristic classes on it vanish, and rank-2
characteristic classes on C'(H#H) also all vanish. Thus all Stiefel-Whitney classes of 0P
are 0. Next, add an exterior collar C' = 0P x [0,1) along 0P to obtain a 5-dimensional
simplicial complex Q.

We first observe that those 4-dimensional
links not PL. homeomorphic to S*, such as
the links of 2z, y, x x 0, and x x 1, are sim-
ply connected (I only understood that the
link of y is T* which is a homotopy sphere,
thus m; = 0). Therefore, by Lemma P, @
is a triangulated 5-dimensional manifold.

We next observe that the 3-dimensional
links on @ not P.L. homeomorphic to S?
are all sub-polyhedra on @, such as L =
zx[0,1]uy=(zx{0,1}) =~ S" and M =
y*2zuUzx[0,1). The links of 1-simplices in
L are all P.L.. homeomorphic to H, and the &5 P =
links of 1-simplices in M are all P.L. home- FlpC = Puap (BP* [0l J)
omorphic to H#H. Since u(H#H) = 0,
and all other links are standard spheres,
naturally p is also 0. By Siebenmann’s
Theorem [C], there must exist a PL structure ¥ on @ — L. Here ¥ is not consistent
with the polyhedral structure of ().

Theorem 7 (Siebenmann’s Theorem [C]). If a boundaryless topological manifold W™, n >
5 s triangulable but has no P.L. structure, then there exists a 3-dimensional homology
sphere M3 with Rokhlin invariant i(M3) = 1, such that the suspension X" "3M? is home-
omorphic to S*.

Our construction is nearly complete, but the manifold @ is currently open. We need
to “trim and patch” it into a closed manifold:

We can now use P.L. transversality relative to X, Px(0,1) to obtain a compact connected
oriented 4-dimensional submanifold V' < 0P x (0,1). Its normal bundle is trivial, and it

17



18 5 Galewski & Stern’s Work for n > 5

separates 0P x [0, 1) into two parts, A and B. Without loss of generality assume A > 0P.
Then P v cl[A] is a topological manifold, and (P u cl[A]) = V.

)
B PUQP C= Puap (an[O,l))
\/QCDPX(OII)
& V="20(Pucl(n)

Since the normal bundle of V' is trivial, all Stiefel-Whitney classes are 0, so there exists
a 5-dimensional P.L. manifold W such that V = W.

\

\ =5
N
J

Finally, we define N° = P Uap cl[A] Uy W.

N*=P Ul (W, )

Figure 6: W is actually compact with boundary V; for convenience, we draw it outside.

18



5.3 Construction of the Universal 5-manifold 19

Since there is a P.L. structure ¥ on ) — L, N — L is also a PL manifold. Therefore,
the Poincaré dual of A(NN) (the obstruction to the existence of P.L. structure, clearly
dominated by L here) is L. Also, the Poincaré dual of w;(N) (obstruction to orientation;
since wy (X x [0,1] U S) is non-zero, wy(N) is also non-zero, caused by the co-oriented
connected sum H#H) restricted to P is X X % (this can be thought of as migrating this
homology obstruction from the intersection line of the H# H connected sum to the cross-
section of the product space; removing this cross-section from N makes it an orientable
manifold).

By the definition of Wu class, for any manifold M and x € H"*(M), the Wu class
vy, satisfies v, — 2 = Sq¢¥(x) € H"(M), where Sq¢* is the Steenrod squaring operator:
H™(M) — H™*(M), satistying Sq" = idym (), so v9 = 1. Wu Wenjun’s theorem gives
the relationship between Wu classes and Stiefel-Whitney classes:

Theorem 8 (Wu). Sq(v) =w

Here Sq= >, Sq", v =3," vk, w= Y, wg, and wy = 1. Thus w; = v; +Sg*(1).

By the Cartan formula S¢*(a — b) = Yiivik 54" (@) — S¢(b), we know Sq¢'(a) =
Sq'(1 — a) = S¢°(1) — Sq'(a)+Sq' (1) — S¢°(a) = Sq'(a)+Sq¢' (1) — a, s0 Sq'(1) = 0,
and w; = vy. (This proof can also be considered from the naturalness of Sq, i.e., there
exists a trivial continuous function f : M — pt, so Sq'(1y) = S¢*(f*1) = f*(S¢* (1)),
while Sq'(1,;) € H'(pt;Z/2) = 0, so Sq' (1) = 0.)

In summary, Sq¢'(z) = v, — x = w; — x.

Thus S¢*(A(N)) = wi(N) — A(N). However, (wi(N) — A(N),[N]) # 0 is the
intersection number of L and X x 1 (L n (X x 3) # @), so S¢"(A(N)) # 0. That is, N
is the required 5-dimensional manifold.

To summarize the construction idea above: We want to make a 5-dimensional manifold
N where S¢*(A(N)) is a non-zero element in the 5th cohomology group. From calcula-
tions regarding characteristic classes, it is the cup product of the 1st Stiefel-Whitney class
wy € H'(N;Z/2) and the Kirby-Siebenmann class A(N) € H*(N;Z/2). Since w; is the
obstruction to orientation and A is the obstruction to the existence of a P.L. structure,
geometrically, we need to find a 4-dimensional closed submanifold (corresponding to wy)
and a l-dimensional closed submanifold (corresponding to A) in a non-orientable man-
ifold without a P.L. structure. These are elements in homology classes, and removing
them gives the manifold orientation and a P.L. structure respectively. Thus they are the
geometric obstructions for both, and their Poincaré duals are the elements in the corre-
sponding cohomology classes. During the construction, we repeatedly form topological
cones, introducing many cone points. Cone points are often not manifold points (their
links may not be spheres), so we need to add collars to “hide” the cone points. However,
this results in an open manifold, so we perform some “trimming and patching” surgeries
to obtain a closed manifold.

5.3.1 A More Direct Construction

[Man24] gives another example where Sq'(X) # 0. Leveraging the theory of intersection
forms of 4-manifolds, its construction is more direct (though this theory was published
later than Galewski & Stern’s construction), coming from Kronheimer:

Let X = *(CPQ#@) be a simply connected 4-manifold with intersection form

1 0 tto — 1 0
0 _1 ) congruent to 0 1

19



20 6 Manolescu’s Work

Here ‘" indicates it is another simply connected closed 4-manifold with the same inter-
section form as CP*#CP?, homotopy equivalent to it but not homeomorphic.

Freedman’s series of conclusions in 1982 [Fre82] proved the existence of such manifolds:
Generally, if an intersection form is odd (if 27 Qx is always even, Q is called an even form,
otherwise odd), there are exactly two homeomorphism types of topological manifolds with
it as an intersection form, and at most one of them admits a smooth structure. The pres-
ence or absence of a smooth structure is distinguished by the Kirby-Siebenmann invariant
A. Since CP?4#CP? has a natural smooth structure, X is the other homeomorphism type
without a smooth structure, and A(X) # 0.

Freedman’s work also showed that since there exists a congruence transformation from
the intersection form of X to its negative matrix, there exists an orientation-reversing
homeomorphism f : X — X. Let M?® be the mapping torus of f. That is,

M = (X x I)/(x,0) ~ (f(2),1).

Since A(X) # 0 e HYX;Z/2) = Z/2, we have A(M) # 0. Also, the mapping torus
glues the boundaries of the cylinder “with the same orientation” (relative to the base, but
reversing fiber orientation), making M a non-orientable manifold (similar to the Klein
bottle), so wy (M) # 0. Similar to the conclusion in Galewski & Stern’s construction, we
have:

S A(M) = A(M) — wy (M) # 0.

6 Manolescu’s Work

Manolescu’s work uses techniques from gauge theory. Specifically, it is a type of Floer
homology called Pin(2)-equivariant Seiberg-Witten Floer homology. Gauge theory is the
study of specific elliptic partial differential equations, first appearing in physics to reflect
strong and weak interactions between particles. In the 1980s, Donaldson pioneered the ap-
plication of gauge theory to low-dimensional topology. Floer homology, constructed from
gauge theory, is an invariant of 3-manifolds useful in studying cobordism. (A cobordism
between two 3-manifolds Y, Y’ is a 4-manifold with initial boundary Y and final boundary
Y’.) Atiyah called Floer homology a Topological Quantum Field Theory (TQFT). The
main property of TQFT is that a cobordism from Y to Y’ induces a map between the
corresponding invariants of the two 3-manifolds (in this case, a map between their Floer
homologies). For standard homology theories, we need an actual map (not a cobordism)
between Y and Y’ to obtain a map between homologies. Different types of Floer homology
(e.g., Seiberg-Witten, Heegaard Floer) are primary tools for studying cobordisms between
3-manifolds, and resolving the Triangulation Conjecture is just one application.

6.1 Brief Summary of the Proof

From the work of Galewski-Stern and Matumoto, we know that whether the Triangulation
Conjecture holds is equivalent to whether the short exact sequence [ll splits. Splitting is
equivalent to 3[Y] € O3, 2[Y] =0, u(Y) = 1.

If we want to disprove the Triangulation Conjecture, we simply need to show that
such a [Y] does not exist. We just need to find a lift from the Rokhlin homomorphism

20



6.2 Kronheimer-Mrowka’s Construction Method 21

,u:@3—>Z/2toM:@3—>Z,i.e.,

Z

A
]\//[// l mod 2

Equivalently, we need to find an invariant m(Y") € Z for an (oriented) integer homology
sphere Y satisfying:

1. m(Y) is a homology cobordism invariant, thus inducing (descending to) a map
M : 03 — 7,

2. The mod 2 reduction of m(Y) is u(Y);
3. m satisfies m(Y1#Y2) = m(Y1) + m(Y2), so M is a group homomorphism.

Thus, if u(Y') = 1, the order of [Y] cannot be 2.

So far, we have not found an invariant satisfying all three conditions above. The
Casson invariant A(Y) is a lift of u(Y"), but it is not a homology cobordism invariant.
The Frgyshov invariant h(Y'), the map ¢ derived from Monopole Floer homology, and
the Ozsvath-Szabo correction term d(Y') derived from Heegaard Floer homology are all
homomorphisms from O3 to Z, but they are not lifts of u.

However, Manolescu used Pin(2)-equivariant theory to find homology cobordism
invariants (invariant under homology cobordism relation) «a, 8, 7. Although they do not
satisfy the above conditions (£ is not a homomorphism; for example, let Y = ¥(2,3,11)
be the Brieskorn sphere, we have 3(Y) = 0, but S(Y#Y) = 1), 5 has the property:
B(=Y) = —p(Y). This is sufficient to disprove the Triangulation Conjecture.

Theorem 9.
0 — ker(p) > 055 7Z/2 -0

is not split exact.

Proof. Proof by contradiction. Assume the exact sequence splits. Then there exists
Y] € ©3,2]Y] =0, and u(Y) = 1€ Z/2. Then B(Y) € Z is an odd number. We have
B(=Y) = —p(Y). Since the order of Y is 2, Y and —Y are homology cobordant, meaning
B(Y) = B(=Y). This implies S(Y') = 0, a contradiction. O

Although the invariant £ constructed by Manolescu solved the Triangulation Conjec-
ture, it does not satisfy S(Y1#Y2) = (Y1) + 5(Y2), meaning it is not a homomorphism.
Whether there exists a homomorphism M : ©3 — Z that is a lift of y remains an open
problem.

6.2 Kronheimer-Mrowka’s Construction Method

First, we introduce some basic concepts: Monopole Floer homology consists of three
finitely generated graded F[U]-modules, where deg(U) = —2, meaning U acting on an
element of the graded group reduces the degree by 2; F = Z /2. The definition of Monopole
Floer homology requires the use of a spin® structure on the manifold. Specifically, it is
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22 6 Manolescu’s Work

a topological invariant defined on any orientable closed 3-manifold (orientable closed 3-
manifolds have a unique spin structure, and thus a unique spin® structure). Disproving
the Triangulation Conjecture only requires its properties on integer homology spheres.
Later we will prove that the three functions «, 5,7 on integer homology spheres derived
from it are invariants under the cobordism relation, and thus can be viewed as maps
0 —Z.

Therefore, for brevity of construction, we only consider the Monopole Floer homology
of integer homology spheres Y, namely HM (Y), HM(Y), and HM (Y. They correspond
respectively to the homology of a manifold with boundary of infinite dimension,
the homology relative to the boundary, and the homology of the boundary. Thus, it fits
into the exact triangle:

HM(Y) » HM(Y)
V(Y

In fact, the corresponding cohomology groups of these homologies are isomorphic to the
homology groups of —Y'.

Regarding the construction of this infinite-dimensional manifold with boundary, there
are two methods. One is given by Kronheimer and Mrowka [KMO07]; Francesco Lin’s two
articles [Linl6][Linl7] also introduce how to construct Seiberg-Witten Floer homology
using this method, with the idea of using “real blow-up” to handle reducible critical points.
The other is given by Manolescu adopting Furuta’s “finite dimensional approximation”
method, with the idea of applying finite-dimensional Morse theory to infinite dimensions.

We will outline the proof idea of the first method and detail the construction process
of the second method in the next section.

The infinite-dimensional manifold with boundary constructed by the first method is
B x ES'/S!. The process and reasoning are as follows:

First, we give some basic concepts to be used.

For an integer homology sphere Y, let g be a Riemannian metric on Y, and take the
Levi-Civita connection V on TY. Consider a trivial C2 bundle S — Y. Define the action
of TY on S:

p:TY — su(S) < End(95)

mapping an orthonormal frame {ej, €2, e3} of TY to Pauli matrices, i.e.,

o= (o 5) = (1 ) = (7 o)

Using the canonical isomorphism 7Y =~ T*Y given by the metric and complex linear
extension, we can induce a map, still denoted as p,

p:T*Y ® C — sl(S) < End(S)

Let A be a spin connection on S — Y, i.e., the covariant derivative V4 satisfies
Valp(v)p) = p(Vv)o + p(v)Va¢p, where v e I'(TY), and ¢ € I'(S) is a spinor.

The trivialization of T'Y provides a trivial connection Ay, and a spin connection can
be written as A = Ag + a, where a € Q' (Y;iR).

22



6.2 Kronheimer-Mrowka’s Construction Method 23

The configuration space C(Y') consists of (a,¢) € Q' (Y;iR) ®T'(S), where Ay +a is a
spin connection on S, and ¢ € I'(S) is a spinor.
Let the gauge group be G(Y) = {f : Y — S'}. It acts naturally on C(Y):

f(a,0)=(a—f7'df, f-9).

When ¢ # 0, this action is free. For (a,0), it has a stabilizer subgroup isomorphic to
S, namely the constant maps Y — S*. Therefore, fixing a base point yy € Y, the based
gauge group Go(Y) = {f : Y — S' f(yo) = 1} acts freely on C(Y'). Thus we can define
the infinite-dimensional manifold

Bo(Y)=C(Y)/Go(Y)

By definition, the S'-action on By(Y) is free at points other than reducibles.
Define the Dirac operator ¢ : I'(S) — I'(S),

3
#(0) =) ple:) Vo0
i=1
More generally, for a spin connection A, we can define the “twisted Dirac operator”
&A =po VA? i'e'7
Va * 4
[(S) —=I'(T* x S) > T'(S)

Next, define the Chern-Simons-Dirac functional CSD : C(Y) — R,

CD(0.6) = ; [ (€6, + p(A)edy —a » da)

where dv is the volume element of the Riemannian metric on Y.

Since Y is an integer homology sphere, CSD is a gauge invariant, meaning its value is
invariant under the action of G(Y). Thus it can be viewed as an S'-invariant functional
on By(Y).

Similar to Morse homology, the critical points of CSD here will serve as generators for
Monopole Floer homology, and solutions to the flow equation & = —grad CSD(z(¢)) will
serve as boundary maps.

The gradient of CSD is

grad CSD(a, ¢) = (+da — 2p" 1 ((¢p ® ¢*)o), o + p(a)¢) € C(S),

where ¢* denotes the dual section, so ¢ ® ¢* is an endomorphism on S, and (¢ ® ¢*)
denotes its traceless part. The critical points of CSD are determined by the Seiberg-
Witten equations:

xda —2p7 (P ® ¢*)o = 0,
76+ pa)o

However, the current objects cannot be realized as simple Morse homology due to
problems such as:

W/(a?(b)_{

1. Limit points on By/S! are not isolated, so the S-W equations need perturbation to
obtain isolated critical points;
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24 6 Manolescu’s Work

2. The Hessian matrix of CSD at critical points may have infinitely many positive
eigenvalues and infinitely many negative eigenvalues, so the index (number of neg-
ative eigenvalues) of critical points is not well-defined.

3. Reducible critical points are not manifold points of By/S?.

The first two problems can be overcome by standard methods of Floer theory. To solve
the third problem, there are options: (a) ignore reducible critical points; (b) use the “real
blow-up” operation. However, ignoring reducible critical points brings many problems:
for instance, the result will not be a diffeomorphism invariant, and much topological
information (such as the key information to disprove the Triangulation Conjecture) lies
in the reducible critical points.

The real blow-up operation was pioneered by Kronheimer-Mrowka. Consider C7(Y) =
C(Y) x R*%. The map 7 : C°(Y) — C(Y), (a,¥,s) — (a,s- ) is the Blow-down map.
Let B = n(C?(Y))/Go(Y') be an infinite-dimensional manifold with boundary.

For a general compact Lie group G, if it acts on space X, one can perform the Borel
construction: define the equivariant cohomology of G' as HS(X;F) = H,(X xg EG;F),
where FG — BG is the universal principal G-bundle. Thus EG is a contractible space
with free G action, and X xg EG = (X x EG)/G is the orbit space of the G action,
where the action of g € G on the product space is defined as g - (x,¢) = (gx,eg™1). Since
BG = EG/G, there exists a fibration

X%XXGEG

lw
BG

Specifically, if G acts freely on X, then X x EG/G = X /G.

And from this construction, the homology graded group HS(X;F) is a module over
the cohomology ring Hf(pt; F) .= H*(BG;F), where the action of the cohomology ring
on the homology group is the cap product.

Specifically, when G = S!, BG! = CP*, and H*(CP*,F) ~ F[U], with deg(U) = —2.
The cobordism relation induces homomorphisms between F[U]| modules.

In this case, we obtain HM = HS'(B3(Y);F), which is isomorphic to F[U, U] /F[U].
It is an infinitely long single chain, called a “tower”. The degree of the lowest non-trivial
homology group in the sequence is an invariant of homology cobordism. Dividing it by 2
yields a surjective homomorphism § : ©3 — Z, and §(Y) = u(Y) mod 2. However, the
chain complex here is not a topological invariant; it depends on the choice of metric g. In
fact, ¢ here is not a lift of u over Z.

Although S'-equivariant Monopole Floer homology failed to bring the invariant we
needed, if we consider the Pin(2) action, the Seiberg-Witten equations will display more
symmetry and yield the required invariants.

Pin(2) :=S' UjS' €« C U jC < H. Its action on By(Y) is defined as follows: S! acts
on C? by complex multiplication, while j acts on (vy,vs) € C? to give (=0, —7;), and
j'(aa¢) :_( a¢])

Similar to the S'-equivariant case, Hy " (BZ(Y); ) H,(B§(Y) Xpin@2) EPin(2); F),
HS = HEme (B“( );F), and we can further obtain HS, HS. To avoid repetition, we will
formally prove (using the Leray spectral sequence) in the next section that H;; Pin(2) (pt; F) =
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6.3 Manolescu’s Construction Method 25

H*(BPin(2);F) = Flv,q]/(¢*), where deg(v) = —4,deg(¢) = —1. Thus HS is a module
over R = Fv, q|/(¢%).

Here we have a Gysin sequence linking the two types of Monopole Floer homology:
on HM , regarding v as U? and ¢ as the 0 map, we have

.= HS(Y) % HS(Y) — HM(Y) — HS(Y) — - --

which is a sequence of graded modules over R.

As an F[v]-module, HS(Y') has 3 infinitely long towers, linked to each other by multi-
plication by ¢q. The degrees of their lowest non-trivial homology groups are directly related
to u(Y'). Let the degrees of the lowest non-trivial homology groups of the three sequences
be A,B,C. Then a = é, = %,7 = % are invariants of Y, satisfying o = 8 > ~, and
= 1(Y) mod 2. They are also homology cobordism invariants, i.e., can be viewed as maps
©3 — Z. Furthermore, they satisfy a(=Y) = —y(Y),8(=Y) = —=5(Y),7(=Y) = —a(Y).
The specific proof will be shown in the next section.

6.3 Manolescu’s Construction Method

Manolescu adopted Furuta’s “finite dimensional approximation” method, applying finite-
dimensional Morse theory to infinite dimensions. The process of finite dimensional ap-
proximation is “uniformly convergent,” so this method works.

The previous construction process is consistent with Kronheimer and Mrowka’s ap-
proach. Here we pick up from after the construction of the Seiberg-Witten equations:

6.3.1 Seiberg-Witten Equations in Coulomb Gauge
Define the (global) Coulomb slice

V i=ker(d*) @ T'(S) c C(Y,s)

where s is the unique spin® structure on the homology sphere Y, and d* : Q*(Y) —
QF1(Y) is the codifferential operator, related to the Hodge star operator and the exterior
differential operator by d*w = (—1)"*+D+lw g« .

We can view V as the quotient space of the “normalized gauge group” Gy < G action,

goz{u;Yesl\u:eﬁ,ézYﬂiR,f § =0}
Y

Since Y is an integer homology sphere, we have the Hodge decomposition
QYY) = ker(d) ® ker(d*)

Fix (a,¢) € V. Let my : T(4,)C(Y,s) — V be the linear projection such that the kernel
of the projection is tangent to the Gy orbit. Let T'Gy be the tangent space of the Gy orbit,
so ker my < T'G,.

Recall the previously defined Seiberg-Witten equations

xda —2p7 (P ® ¢*)o = 0,

Wi, 9) = {a¢+p<a>¢
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26 6 Manolescu’s Work

Now let SW I:WVOS—T—//VZV—)V.
Using the S* action € : (a, ¢) — (a,e?), we obtain a bijection

{Flow lines determined by SW}/G <=5 {Flow lines determined by SW}/S"

Further let 7°¢ : T{, 4C(Y,s) — T*Gy, having ker 7¢ < T'Gy. The image of 7 is
called the extended local Coulomb slice K¢, which is the orthogonal complement of the
Gy orbit.

On the Coulomb slice V', the SW equation can be written as the sum of 1 linear part
and 1 continuous part

SW=1I1+c
where [,c: V — V are defined as
l(a, ¢) =(+da, §¢) (5)
c(a, ) =my o (=29~ (¢ ® ¢*)o, p(a)9) (6)

Let V() be the L% completion of V, where k » 0 € N. Here we take k& > 5, then
I : Vigy = Vik—1) is a linear, self-dual, Fredholm operator, while ¢ : Vi) — Vjp_1) is a
compact operator.

Below is the compactness theorem for the Seiberg-Witten equations suitable for the
Coulomb gauge.

Theorem 10. Fix k > 5. There exists R > 0 such that all critical points of SW and flow
lines between critical points are contained in the ball B(R) < Vix.

6.3.2 Finite Dimensional Approximation

Seiberg-Witten Floer homology is similar to the Morse homology of SW on V. However,
compared to finding a generic perturbation on the Seiberg-Witten equations to realize
transversality conditions, it is more convenient to use the method of finite dimensional
approximation.

In the previous construction, V' is an infinite-dimensional space. Its finite dimensional
approximation is

Vii= @ V(O <0« p

A<C<p

where V(() is the eigenspace for eigenvalue (.
We can then replace SW = [ + ¢ with

[+ phc: V-V

where pf : V' — V}" is the L? projection. Thus SWY{' := [ 4 pic is a vector field on V.
For finite dimensional approximation, there is the following compactness theorem:

Theorem 11. There exists R > 0 such that for all ;1> 0 > X, all critical points of SWY'
in B(2R), and all flow lines connecting critical points in B(2R) lie in a smaller ball B(R).

The idea of the proof is to use the fact that in B(2R), | 4+ p\c converges uniformly to
[ + ¢, so the previous theorem can be used.
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6.3 Manolescu’s Construction Method 27

6.3.3 Conley Index

In the finite-dimensional case, the Morse homology of a compact manifold is exactly the
usual homology. Now we have to deal with the non-compact space B(2R) < VY. In this
case, Morse homology is the homology on the Conley index.

For a fixed m-dimensional manifold M and a flow {¢;}, the Conley index can be
defined on an isolated invariant set S of {¢;}.

Definition 10. For a subset A < M, define
InvA = {z € M|¢y(z) € A, Vt € R}

Definition 11. If a compact set S € M satisfies S = InvA < IntA, where A is a compact
neighborhood of S, then S s called an isolated invariant set of M.

Definition 12. For an isolated invariant set S, the Conley index I(S) = N/L, where
Lc Nc M, and L, N are compact sets satisfying

1. Inv(N—-L)=ScInt(N - L)
2. Yz e N, if 3t > 0 such that ¢(x) ¢ N, then 37 € [0,t) such that ¢, (x) € L
8. xeL,t>0, ¢og(x) = N = ¢pg(x) = L

That is to say, all flow lines exiting N must pass through L.

Now, we take A = B(2R), so S = InvA. From the previous theorem, S is the union
of all isolated points and flow lines therein. Next, N can be taken as a manifold with
boundary, and L < ¢N is a codimension 0 submanifold of 0N, so L itself also has a
boundary.

It can be proven that if the flow lines satisfy the Morse-Smale condition, then the
Morse homology of B(2R) is isomorphic to the reduced singular cohomology of I(.S).

6.3.4 Seiberg-Witten Floer Homology

Now we define the S'-equivariant Seiberg-Witten Floer homology as an S'-equivariant
Borel homology,

SWFHS (Y) = HZ, (1), 1> 0> A

Here I} is the Conley index of S* < V{, and the degree of the graded group is shifted
by an amount depending on A, u. The shift amount will be specified below.

In fact, the above constructions are all Pin(2)-equivariant as well, because on a 3-
dimensional homology sphere, the spin® structure is a spin structure.

Therefore, we can obtain Pin(2)-equivariant Seiberg-Witten Floer homology. Specifi-
cally, we take coefficients in F = Z/2:

SWEHP /(Y F) = H "0 (I5F), > 0 A
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28 6 Manolescu’s Work

6.3.5 Invariant Properties of SWFH and Determination of the Shift

Although A, 1 in the definition can vary, when they are large enough, the defined Floer
homologies SWFHS' (V) and SWFH, n(2) (Y) are invariants of Y.

Consider the flow equation & = —SW{ (z(t)) determined by SW{" = I+phc: VI — V{1,
and examine the change in the Conley index I} as u, A change. If we change p ~ p/ >
i >» 0, we have the decomposition

V/\M = V)\u ® Vu“l

l—l—p‘;lc ~ L+ ph @ l+pl’j'c

and [ + p,/j/ depends almost entirely on the linear part (.
And the Conley index remains invariant under deformation, meaning if we have a
family of flows ¢(s), s € [0, 1], such that

S(s) = Inv(determined by ¢(S) on B(R)) < IntB(R), s € [0,1]

then 1(S(0)) ~ I(S(1)).
At this point, let ¢(0) be [ + p’/\‘/. It can be deformed to (1), defined as the direct
sum of the flow of I + p§ and the linear flow [ on VN"'. Thus we obtain

I =1(5(0) = 1(S(1) = I A I (1)

where [ ;j/(l) is the Conley index of the linear flow & = —I(x) on Vlf".
Since [ has only positive eigenvalues on VM“/, it implies

/ _ @(Morse index) __ Q0
(1) ==9 =9
Thus [f\‘/ =1I{, p,p/ » 0.
On the other hand, when changing the lower bound A\ of negative eigenvalues, the
Conley index is
Il =1 A IN(D)

where I3)(1) = S*=*|. Therefore, the shift amount is the dimension of VY, i.e.,

Hfj—dim V)\O (If)

When g » 0 >» A, it is independent of the values of A, u. The conclusion for Pin(2) is
the same.

To show that SWFH is a topological invariant, we should also prove that it is in-
dependent of the choice of Riemannian metric g. Fix u, \. When ¢ is perturbed, e.g.,
continuously changing from g to g1, the dimension of Vy* does not change. However, the
dimension of V) may change. This change is determined by the “spectral flow” of the
linear operator [, which counts with sign the number of eigenvalues crossing zero as g
changes.

For the linear part [ = (xd, ), since H' = 0, *d has no zero eigenvalues. However,
¢ has spectral flow. Choose a spin 4-manifold W with boundary (Y,g), and attach a
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6.3 Manolescu’s Construction Method 29

cylindrical end to the boundary, i.e., W* Uy Y x [0,1]. Then the spectral flow of ¢ is
determined by the following formula:

SE(7) =n(Y, go) = (Y. 1)
= 2 index(¢) on Y x [0, 1]

Here index(&) = ker ¢ — cokergd represents the Atiyah-Singer index of ¢.

n(Y,g) = —2 (indexc(Dy ) + %VV)) €27

Thus n(Y, ¢g) = 2p mod 4.
So we finally obtain

1 ~ ol
SWFH;? (V) = Herdimefn(Y,g)(Ig)

and
SWFHfin(2)(Y3 F) = Hfj:ii(ijlvffn(xg)(fﬁ IF)
are topological invariants of Y.

Similarly, generalized homology theories can be constructed, such as K-theory K iy in(2),

or Borel homology HS, where G is any subgroup of Pin(2).

6.3.6 Seiberg-Witten Floer Stable Homotopy Type

In fact, the above construction yields an invariant stronger than homology groups, namely
the Pin(2)-equivariant stable homotopy type SWF. We will explain its relationship with
SWFH later.

Definition 13. Without requiring equivariance, a suspension spectrum is (X,n), where
X is a topological space and n € Z. We consider (X,n) as formally de-suspending X n
times, 1.e.,

(X,n)=X"X
And the n-th suspension of X is
X =8"AX.
Let [X,Y] denote the homotopy class of pointed maps. We can define a category
where objects and morphisms are:
Obj = (X, n)
lim 2V "X 2V Y] m-—neZ
Mor = [(X,n),(Y,m)] = { Nonz
0 m—n¢Z
We can similarly define Pin(2)-equivariant suspension spectra.

Since Pin(2) can be viewed as two symmetric S! connected by reflection j, it has the
following irreducible representations:

R trivial action

R { 7 multiplication by — 1
St trivial action

H Pin(2) left multiplication
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30 6 Manolescu’s Work

Therefore, a Pin(2)-equivariant suspension spectrum is a quadruple (X, ng, ng, nm).
The finite dimensional approximation of V' can be decomposed as

V=R @H

where R is the component for the sign representation, and H is the component for the
spinor representation.
Therefore, we define the Seiberg-Witten Floer equivariant spectrum of Y as

n(Y,g)

SWE(Y) =3x8 T n-Wr

For a linear space V representing a group G, XY X = X A S, where SV denotes
the one-point compactification of V', which naturally has a G action, so XV X also has a
natural G action.

It satisfies

HPO(SWF(Y); F) = SWFHP™® (Y F).

6.3.7 Homology Cobordism Invariants «, 3,y

We will use SWEFHY™2)/(Y;F) to construct a map 3 : O — Z satisfying
L B(=Y) =-p(Y)
2. B(Y)=p(Y) mod 2

In this process, we will also obtain two other maps «,v : 0 — Z.

In the KM construction process, we mentioned the Borel homology group H iy in(Q)(X ),
which can be viewed as a module over the cohomology ring (Borel cohomology ) HEi0) (pt) =

H*(BPin(2)) = F[v, q|/(¢*). Below we give the complete proof: For Pin(2) = SU(2), the

inclusion map ¢ induces a fibration

Pin(2) —— SU(2)
&
RP?

Here 1) is the quotient map of the Hopf fibration with the involution on S? (e.g., the
antipodal map). This fibration continues to induce another fibration:

RP? «—— BPin(2)
BSU(2) = HP*
The cohomology ring of RP? is generated by a generator ¢, acting as shown:

q q

F~ *F~ *F

The cohomology ring of BSU(2) = HP* is generated by a generator v, acting as
shown:
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Therefore, by the Leray-Serre spectral sequence of the above fibration, BPin(2) has
the form:

Thus we obtain the isomorphism H*(BPin(2)) = F[v, q|/(¢*), where degv = 4,degq =

So the degrees of action of this cohomology ring on the homology graded group are
degq = —1,degv = —4.
Now we derive the three “towers” in the homology graded group sequence:

Let (I*)5" denote the fixed point set of I* under the action of S* < Pin(2), which
contains points in the reducible locus {(a, ¢)|¢ = 0}.
On this locus, SW generates a linear flow determined by =da.

Thus from this perspective, (I} )5t = §dmVY is a sphere.
Also since
SWE(Y) = x2" 5 n-W g
therefore

(SWF(Y))¥ = 5n(¥:9)

Intuitively, SWF(Y') consists of a reducible part S*¥*9) and an irreducible part com-
posed of some free cells. Thus we have

Sphere ¢ SWF(F) — SWF(Y')/Sphere O Pin(2) acts freely

Therefore
SWFHF™®(y, F) = HI"®)(SWF(Y); F)

is a module over F[q, v]/(¢%).
For the equivariant cohomology ring, by the Localization Theorem, we obtain

VT HS o) (SWE (Y ); F) = V7 Hi ) (5™ F)

Note that ]:Il”;in(z)(S”(Y’g); F) = H* (Y9 (BPin(2); F).

Since both homology and cohomology here take field coefficients, Borel homology
is simply the dual of Borel cohomology. Additionally, we can apply the localization
theorem to Borel homology, thus obtaining the complex structure of SW F Hy in(2)7 i
the equivariant cellular structure of the Conley index, in the following form:

€.,

31



32 6 Manolescu’s Work

Where the finite part can be a vector space of any dimension, connected by v, ¢ actions
or 0; additionally, there exists an infinitely long homology sequence composed of three
infinitely long towers acted on by v. The infinite-dimensional part corresponds to the
Sl-fixed point set of SWF(Y'), and the finite part corresponds to free cells.

Since (SWE(Y))%" = §"¥9 and n(Y,g) = 2 mod 4, we know:

e The degrees of all groups on the first tower from the bottom are 2z mod 4.
o The degrees of all groups on the second tower are 2+ 1 mod 4.
o The degrees of all groups on the third tower are 2 4+ 2 mod 4.

Now take the lowest degrees of the three towers as A, B, C € Z respectively. Then we

can construct
A 3 B-1 Cc -2
o= — = — P —
9 2 T Ty

as invariants of Y, and «, 8,7 = 1 mod 2.

Furthermore, due to the module structure (i.e., ¢ cannot map a 0 element to a non-zero
element), we must have o = > .

Next we prove that they are indeed homology cobordism invariants.

Let W* be a smooth oriented spin(4) cobordism, with b; (W) = 0, and oW =
(—=Yy) U Y; (in our actual application, we only care about the case where Yp,Y) are
homology spheres). Consider the SW equations on W, and performing finite-dimensional
approximation on the solution space, we will get conclusions similar to the 3D case. The
final result is that we will obtain a stable equivariant map between two suspension spectra:

Ty« STESWE(Yy) — S"ESWE(Y7)

Here mH is the direct product of m quaternion type representations, nR represents
the direct product of n sign representations. And

—a(W)

= index(Ip), n=0bf (W) =index(d")
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6.3 Manolescu’s Construction Method 33

Now, when W is a homology cobordism between homology spheres Y, Y7, there exists
a unique spin(4) structure on W, and b;(W) = 0, m = n = 0. Let Fy be the module
homomorphism induced by Wy, between Pin(2)-equivariant SWFH, with the form

Fyw

F -~ > F

F F
v/ ¥ F \|v
v(Y () 0 Y|v
v\ | F /v

F F

F F

0 0

Yo Y

By equivariant localization, when k& » 0, Fy is an isomorphism, and Fyy is a module
map, i.e., there is a commutative diagram

Therefore, we must have

From the module map from SWFH (Y7) to SWFH (Y;), we can get inequalities in the other
direction, so we have

a(Y1) = a(Y)
B(Y1) = B(Yo)
(Y1) = v(Yo)

This shows that «, 5,y are homology cobordism invariants.

6.3.8 Duality

So far we have proved that (3 is a homology cobordism invariant equal to g mod 2. We are
one step away from the invariant we need, which is that it should satisfy S(—=Y) = —p(Y).

For this, we are concerned with the changes in the topological invariant SWFH
caused by reversing the orientation of the 3-dimensional homology sphere (Y, g) to become
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(=Y, g). At this time, the flow line equation determined by the Seiberg-Witten equations
changes

= —SW(a(t)) ~ & = SW(x(t)

For the finite dimensional approximation V', reversing orientation corresponds to
the space pair (N, L;) and (N, L_) constructing the Conley index, such that N is a
codimension 0 submanifold of V}, and

L,uL_ =0N, 0L ,=0L_=L,nL_
Since there is an embedding X < V}* x R = R™"! such that
X~N/L,, R"™ - X~N/L_
by Alexander Duality, we obtain
H(N/Ly) = B*(N/L) (7)

Here d = dim(V}") = dim(X).

However, in G-equivariant SWFH, we need a conclusion similar to H Before that,
we introduce a weaker duality isomorphism theorem for stable homotopy versions, called
Spanier-Whitehead duality.

Without requiring equivariance first, consider a suspension spectrum, i.e., the formal
suspension of a topological space X:

Z=(X,k)=x7"X
and there is an embedding map X «— SV, N » 0.
Definition 14. The Spanier- Whitehead dual of X% X is

D(EX7FX) = 2kn- W=D (gN — X))

By definition, D(S*) = S=% = (S° k), and for two elements Z,)V in the suspension
spectrum, D commutes with wedge product and smash product, i.e., D(ZvW) = D(Z v
DW), D(Z AW) = D(Z) A D(W). By Alexander duality, we get

Hy(2) = H*(D(2))
For the equivariant case, there is a similar equivariant Spanier-Whitehead duality.

Definition 15. Let G be a Lie group, X be a G-space, W be a representation of G. For
some representation V' of G, there is an embedding map X — V*. Then the Spanier-
Whitehead dual on ¥~V X is

DEVX) =" VRVt — X)).

For the two Conley index space pairs with opposite orientations of V)" mentioned ear-
lier, they respectively generate the Seiberg-Witten Floer spectra of Y and —Y, satisfying
the Pin(2)-equivariant duality D(SWF(Y)) = SWF(-Y).

However, for the equivariant case, the SWFH of the dual spaces HS(Z) and H;*(DZ2)
may not be isomorphic. This is because the homology of the former has infinite non-trivial
graded groups only in the positive direction, while the latter has them only in the negative
direction.

For this reason, we need to introduce the concept of co-Borel homology (instead of
dual cohomology of Borel homology).
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Definition 16. The co-Borel homology of an equivariant suspension spectrum is defined
as
cHY(2) = Hy"(DZ)
where Z =XV X.
Borel homology and co-Borel homology are linked by Tate homology.

Definition 17. The Tate homology of Z = X7V X is
tHG(Z) = cHS(EG A 2)
where EG is the unreduced suspension of EG.
An important property of Tate homology is
tHE(Z) =0, if G acts freely on Z.

We will use this property later to simplify Tate homology, leaving only the homology on
the fixed points of the G action.

Additionally, Borel, co-Borel, and Tate homology satisfy the Tate-Swan exact se-
quence:

= B gwe(2) = cHJ(2) — tH(2) = H gne(2) =

n

When G = S', Z = SWF(Y), with Y being a homology sphere,
tHS' (Z) = tHS" (fixed point set of S' action on Z) = tHS' (Sphere) = Z[U, U™
where degU = —2.
Similarly, when G' = Pin(2), we have
tHP @ (SWE(Y); F) =tHI™® (fixed point set of S* action; F)
=t Y™ (Sphere)
=Flg.v,v™"]/(¢")
Recalling the definition of co-Borel homology and

D(SWF(Y)) = SWF(-Y), we have cHPm (SWFE(Y);F) = ﬁ;{;@)(SWF(—Y};F).
Putting this into the Tate-Swan exact sequence, we obtain

"2 (SWF(Y);F) — Hyl o (SWF(=Y);F) —
tH}jm (SWE(Y);F) > H Pm@ (SWE(Y);F) — - --

Therefore, the element of degree n—2 in the first tower from the bottom in SWFH (Y)
corresponds to the element of degree —n in the third tower from the top in the cohomology
of SWFH(-Y'), which further corresponds to the element of degree —n in the third
tower from the bottom in SWFH(-Y). Similarly, the second tower from the bottom
in SWFH(Y) corresponds to the second tower from the bottom in SWFH(-Y), with
the degree changing from n — 2 to —n; the third tower from the bottom in SWFH(Y)
corresponds to the first tower from the bottom in SWFH (—Y), with the degree changing
from n — 2 to —n.

Thus we obtain

v(=Y) = —aY
B(=Y)=—-B(Y)
a(=Y)=—(Y
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7 Applications of 4-Dimensional Topology and Gauge
Theory

2-dimensional topological closed manifolds can be completely classified via triangulation
and computation of homology groups. 3-dimensional topological closed manifolds have a
unique smooth structure. In the 1980s, Thurston proposed the Geometrization Conjec-
ture, which was proven by Perelman in the early 21st century, also achieving geometric
classification.

However, the classification of 4-dimensional closed manifolds is much more difficult.
On one hand, many 4-dimensional topological manifolds do not admit smooth structures;
on the other hand, even within the smooth category, classification cannot be achieved.

Theorem 12 (Markov[Mar58]). There is no algorithm capable of distinguishing whether
two 4-dimensional closed manifolds are smoothly homeomorphic.

This is because the fundamental group 71(X) of a smooth 4-manifold X* can realize
any finitely presented group G = (S|R), where S is the set of generators and R is the
set of relations. However, Adyan and Rubin proved in 1955 that there is no algorithm
to determine whether a finitely presented group is the trivial group, so classification of
finitely presented groups is impossible, and thus classification of smooth 4-manifolds is
impossible.

If we circumvent the classification obstacles caused by the complexity of the funda-
mental group, for example by considering simply connected manifolds, i.e., manifolds with
trivial fundamental group 7m; = 0, we can obtain very rich conclusions.

For a closed simply connected oriented 4-manifold X, its Hy = Z,m; = 0. By the
Hurewicz Theorem, we get H; = 0. Then by the Universal Coefficient Theorem and
Poincaré duality, we know Hy, = 7Z, Hs = 0, Hy = Z°, b > 0.

Therefore, using the dual pairing of generators of Hs, we can define a symmetric
bilinear “intersection form”

Qx:2°x7° -7
(&mn) — <& D)

where D : Hy(X) — H?*(X) is the Poincaré duality isomorphism.

From the duality pairing property, the determinant of the matrix of Qx is +1. That
is, ()x is unimodular.

As early as the 1940s and 50s, mathematicians proved that intersection forms can
achieve the classification of 4-manifolds in the sense of homotopy.

Theorem 13. Let X be a closed simply connected oriented 4-manifold. Then the inter-
section form QQx determines the homotopy type of X.

Next, we wish to know which unimodular symmetric quadratic forms can be realized
as the intersection form of some topological 4-manifold or smooth 4-manifold.

The theory of quadratic forms in linear algebra tells us that over R, ()x is congruent to
m{1y@®n{—1). Let by (X) = m, by (X) = n be the positive and negative indices of inertia.
Then the signature of the intersection form is o(X) = b5 (X) — by (X), and clearly the
Euler characteristic x(X) =24 bo(X) =24 b3 (X) + by (X).
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Over Z, symmetric unimodular bilinear forms can be divided into “definite” (positive
definite m = 0 or negative definite n = 0) and “indefinite” (m,n > 0). They can also be
divided into even and odd types. If Va € Z, Qx(x, ) is even, Qx is called even; otherwise,
it is called odd.

Indefinite forms have a complete algebraic classification. Odd indefinite forms are
congruent to m{(1y®n(—1), m,n > 0. Even indefinite forms are of the form p ((1] (1)) &)

qEs, p>0,q € Z.
Here the matrix of Fg can be written as

-21 0 0 0 0 0 0
1 21 0 0 0 0 O
o 1 -2 1 0 0 0 O
o 0 1 -2 1 0 0 0
o 0 o0 1 -2 1 0 1
o o0 o0 o0 1 -2 1 0
o o0 o0 o0 o0 1 -2 0
o 0 o0 o0 1 0 0 =2

However, definite unimodular bilinear forms have no direct classification. Exam-
ples like n(1) are diagonalizable, while Fg, Es @ Fg, D{s, Leech lattice, etc., are non-
diagonalizable examples.

Another algebraic result is that if Qx is even, then its signature must be divisible
by 8. The first non-trivial important theorem restricting intersection forms was given by
Rokhlin in 1952.

Theorem 14. If X is a closed spin smooth 4-manifold (e.g., a manifold that is simply
connected and Qx is even), then the signature of X is divisible by 16.

From this theorem, we immediately get a corollary: since the signature of Ejy is 8, Ejg
cannot be realized as the intersection form of a closed simply connected oriented smooth
4-manifold.

Since the theorem gives a necessary condition, we cannot use it to judge whether
Es ® Eg can be realized as the intersection form of a smooth 4-manifold.

In fact, intersection forms can realize not only homotopy classification, as in Theorem

}: Freedman gave a series of stronger conclusions in 1982:

Theorem 15 (Freedman[Fre82]). o For any unimodular symmetric bilinear form @,
there exists a simply connected closed topological 4-manifold X such that Qx = Q;

o IfQ is an even form, the corresponding manifold X is unique up to homeomorphism;

o If Q) is an odd form, there are exactly two corresponding homeomorphism types, and
at most one is smoothable. (One has Kirby-Siebenmann invariant 1, one has 0;
KS invariant is 0 if and only if the topological manifold has an R™ wvector bundle,
analogous to a “tangent bundle”).

This not only demonstrates that all unimodular symmetric quadratic forms can be
realized as intersection forms of some simply connected closed 4-manifold, but also gives
their classification.
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For example, there exists a 4-dimensional simply connected closed manifold Mg, whose
intersection form is Eg. By Rokhlin’s theorem, it does not admit a smooth structure.

As another example, the intersection form of the smooth manifold CP? is the odd type
(1). Therefore, there exists a “fake” 2-dimensional complex projective plane, denoted
+CP?, which admits no smooth structure and is not homeomorphic to CP*. By Theorem

J, it is homotopy equivalent to CP?.

Since the intersection form of a 4-dimensional homotopy sphere is trivial, which is an
even form, Freedman’s theorem directly implies the 4-dimensional Topological Poincaré
Conjecture: a 4-dimensional homotopy sphere is homeomorphic to the 4-dimensional
sphere.

Starting from the 1970s, mathematicians introduced tools from gauge theory into the
study of 4-dimensional topology. Donaldson in 1983 gave an application that shocked the
mathematical community, namely Donaldson’s Diagonalization Theorem:

Theorem 16 (Donaldson[Don83)). If the intersection form Qx of a closed smooth simply
connected 4-manifold is definite, then Qx =~ n{l),n € Z.

Through this theorem, we can not only show that Eg cannot be realized as the inter-
section form of a smooth 4-manifold, but also that Es @ Eg cannot. That is, Mg, # Mg,
admits no smooth structure.

Another important conclusion in 4D topology is the existence of exotic smooth struc-
tures on R*. One way to construct this is to take X = CP?#9CP?. Then Qyx =
1)y®AH—1) = (—Es) ®{(—1) @ (1). Take « as the generator of the last (1). By Freed-
man’s theorem, there exists ¥ =~ S? representing «, and by Donaldson’s Diagonalization
Theorem, ¥ =~ S? is not smooth (otherwise (—Eg) @ (1) would be diagonalizable, but it
represents a smooth manifold, contradiction). Take U as a neighborhood of ¥. Then U
can be embedded in CP?. Thus CP*\¥ =~ B*, which is homeomorphic but not diffeomor-
phic to R*.

Based on this idea, Gompf proved that there are infinitely many smooth structures
on R* [Gom85], and Taubes proved there are uncountably many [Tau87].

8 The Poincaré Conjecture

Finally, we introduce the Poincaré Conjecture. This is another very important problem
driving the development of geometric topology. Its research path is similar to that of the
Triangulation Conjecture, proceeding by category and dimension. Interestingly, the 3-
dimensional triangulation problem was solved very early, while the 3-dimensional Poincaré
Conjecture was only solved in this century by Perelman; the smooth triangulation problem
was proven early, but the smooth Poincaré Conjecture remains unresolved. That is, the
problem of the existence of exotic spheres in different dimensions, especially the existence
of 4-dimensional exotic spheres, is a highly open problem.
In 1904, Poincaré proposed the conjecture:

Conjecture 4 (Poincaré Conjecture). Let M be a closed 3-dimensional manifold. If M
is simply connected, then M is homeomorphic to S3.

For a century, this conjecture remained unresolved. But people turned to studying
the analogue of the Poincaré Conjecture in other dimensions, namely the Generalized
Poincaré Conjecture. This is correct for n > 4.
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Theorem 17 (Generalized Poincaré Conjecture). Let M be a closed n-dimensional man-
ifold. If M is homotopy equivalent to S™, then M is homeomorphic to S™.

Since a closed 3-dimensional manifold is simply connected if and only if it is homotopy
equivalent to S® (we give a short proof at the end of this section), the Generalized Poincaré
Conjecture is the original Poincaré Conjecture when n = 3.

1. When n = 1, correct, because a closed curve is necessarily homeomorphic to S*;

2. When n = 2, correct, by the classification theorem of closed surfaces, a simply
connected closed surface must be S

3. When n = 3, correct. In 2003, Perelman used Ricci flow to prove Thurston’s
Geometrization Conjecture (i.e., any closed 3-manifold can be decomposed along
2-spheres into pieces, each assigned one of eight homogeneous geometric structures;
since a simply connected closed manifold cannot be decomposed, it can only have
spherical geometry, i.e., S3), thereby solving the Poincaré Conjecture;

4. When n = 4, correct. In 1982, Freedman developed the topological h-cobordism
theory for 4-manifolds, which, combined with conclusions on intersection forms of
4-manifolds, can provide a proof (smooth h-cobordism theory can only be used for
n = 5);

5. When n > 5, correct. In 1961, Smale used h-cobordism theory to give a proof,
although the case for n = 5 requires Freedman’s topological h-cobordism theory.

Conjecture 5 (Smooth Poincaré Conjecture). Let M be a closed n-dimensional manifold.
If M is homotopy equivalent to S™, then M is diffeomorphic to S™.

For a review of the Smooth Poincaré Conjecture, one can refer to Guozhen Wang’s
article [WX17].

In sufficiently high dimensions, all odd-dimensional spheres possess exotic smooth
structures. Specifically, the only odd-dimensional spheres with a unique smooth structure
are S, 53,65, 561,

More than half of the even dimensions have been proven to possess exotic spheres; it
is conjectured that they exist in the remaining even dimensions as well [BMQ23].

And there is a conjecture:

Conjecture 6. For spheres of dimension greater than 4, the only ones with a unique
smooth structure are S°, S, S12, 6% G61,

Research on the theory of exotic spheres is currently progressing rapidly, and people
believe this conjecture is correct.

Regarding the existence of 4-dimensional exotic spheres, although it is a highly open
problem, people tend to believe that 4-dimensional exotic spheres do exist. Because we
have discovered that 4-dimensional space possesses “wild” properties: for example, R* has
infinitely many smooth structures that are not mutually diffeomorphic.

Conjecture 7 (P.L. Poincaré Conjecture). Let M be a closed n-dimensional manifold.
If M is homotopy equivalent to S™, then M is P.L. homeomorphic to S™.
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The P.L. Poincaré Conjecture has been solved for all dimensions except 4. That is,
the P.L. Poincaré Conjecture is correct for n # 4 [BuoOs]. Since smooth structures are
equivalent to P.L. structures for n < 6, the 4-dimensional P.L. Poincaré Conjecture is
equivalent to the existence of 4-dimensional exotic spheres.

Proposition 1. Let M? be a closed 3-dimensional manifold. Then M is simply connected
<= M s homotopy equivalent to S>.

Proof. <=: m (M) = m(S®) =0, so M is simply connected;

= If M is simply connected, its connected orientable covering is the trivial covering,
meaning M is an orientable manifold, so H3(M) = Z . Also since H;(M) is the abelian-
ization of m (M), m (M) = 0 implies Hy(M) = 0. By the Universal Coefficient Theorem,
H'(M) = 0. Then by Poincaré Duality, Hy(M) =~ H'(M) = 0. By the Hurewicz The-
orem, mo(M) = Ho(M) = 0, and consequently m3(M) =~ Hs(M) =~ Z. This means a
generator of m3(M) can be determined by a map S® — M of degree 1, inducing an iso-
morphism between Hz and m3. Furthermore, there exists a map from S® to M (regarded
as simply connected simplicial complexes) that induces isomorphisms on all homology
groups. By Whitehead’s Theorem, this map is a homotopy equivalence. Il

The idea for the necessity part of the proposition comes from [Hat04].
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